• 제목/요약/키워드: Seismic vulnerability

검색결과 211건 처리시간 0.023초

통계분석 기법과 머신러닝 기법의 비교분석을 통한 건물의 지진취약도 공간분석 (A Spatial Analysis of Seismic Vulnerability of Buildings Using Statistical and Machine Learning Techniques Comparative Analysis)

  • 김성훈;김상빈;김대현
    • 산업융합연구
    • /
    • 제21권1호
    • /
    • pp.159-165
    • /
    • 2023
  • 최근 지진 발생 빈도가 증가하고 있는 반면 국내 지진 대응 체계는 취약한 현실에서, 본 연구의 목적은 통계분석 기법과 머신러닝 기법을 활용한 공간분석을 통해 건물의 지진취약도를 비교분석 하는 것이다. 통계분석 기법을 활용한 결과, 최적화척도법을 활용해 개발된 모델의 예측정확도는 약 87%로 도출되었다. 머신러닝 기법을 활용한 결과, 분석된 4가지 방법 중, Random Forest의 정확도가 Train Set의 경우 94%, Test Set의 경우 76.7%로 가장 높아, 최종적으로 Random Forest가 선정되었다. 따라서, 예측정확도는 통계분석 기법이 약 87%, 머신러닝 기법이 76.7%로, 통계분석 기법의 예측정확도가 더 높은 것으로 분석되었다. 최종 결과로, 건물의 지진취약도는 분석된 건물데이터 총 22,296개 중, 1,627(0.1%)개의 건물데이터는 통계분석 기법 사용 시 더 위험하다고 도출되었고, 10,146(49%)개의 건물데이터는 동일하게 도출되었으며, 나머지 10,523(50%)개의 건물데이터는 머신러닝 기법 사용 시 더 위험하게 도출되었다. 기존 통계분석 기법에 첨단 머신러닝 기법활용결과가 추가로 비교검토 됨으로써 공간분석 의사결정에 있어서, 좀더 신뢰도가 높은 지진대응책 마련에 도움이 되길 기대한다.

저감장치에 의해 개선된 고속도로 다경간 강교량의 지진응답 (Seismic Responses of Highway Multiple Span Steel Bridges Retrofitted by Protective Devices)

  • 최은수;김주우
    • 한국공간구조학회논문집
    • /
    • 제4권1호
    • /
    • pp.49-59
    • /
    • 2004
  • 이전 논문에서 미 중부 및 동남부 지역의 전형적인 다경간 단순효와 다경간 강거더 연속교의 지진 응답을 연구하였으며, 이런 교량에서 덱 사이의 충돌과 큰 연성이 요구되는 기둥은 취약하여 손상을 입을 수 있다는 것을 보여주었다. 더구나, 고정 및 가동 교조장치는 강한 지진운동에 쉽게 피해를 입을 수 있다. 이 논문에서는 몇 개의 개선된 고무 베어링, 납-고무 베어링 그리고 제지선을 사용하여 전형적인 다경간 단순교와 다경간 강거더 연속교의 지진 응답을 평가하였다. 납-고무 베어링은 지진에 취약한 전형적인 교량의 응답을 개선하는데 효과적인 방법으로 평가되었다. 고무 베어링은 기둥의 요구량을 줄이지만, 다경간 단순교 강거더 교량에서 덱 사이의 강한 충돌을 유발시킨다. 제지선은 일반적으로 사용되지만 다경간 단순교와 다경간 연속교의 지진에 대한 손상을 절감하는데 중간정도의 효과를 보여주었다.

  • PDF

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

Passive seismic protection systems with mechanical metamaterials: A current review

  • Guevara-Corzo, Jeffrey J.;Begambre-Carrillo, Oscar J.;Garcia-Sanchez, Jesus A.;Sanchez-Acevedo, Heller G.
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.417-434
    • /
    • 2022
  • In this work, a review of mechanical metamaterials and seismic protection systems that use them is carried out, focusing on passive protection systems. During the last years, a wide variety of classical systems of seismic protection have demonstrated to be an effective and practical way of reducing the seismic vulnerability of buildings, maintaining their health and structural integrity. However, with the emergence of metamaterials, which allow obtaining uncommon mechanical properties, new procedures and devices with high performance have been developed, reducing the seismic risk through novel approaches such as: seismic shields and the redirection of seismic waves; the use of stop band gaps and the construction of buried mass resonators; the design of pentamodal base isolators. These ideas are impacting traditional areas of structural engineering such as the design and building of highly efficient base isolation systems. In this work, recent advances in new seismic protection technologies and researches that integrate mechanical metamaterials are presented. A complete bibliometric analysis was carried out to identify and classify relevant authors and works related with passive seismic protection system based on mechanical metamaterial (pSPSmMMs). Finally, possible future scenarios for study and development of seismic isolators based on mechanical metamaterials are shown, identifying the relevant topics that have not yet been explored, as well as those with the greatest potential for future application.

Seismic demand estimation of RC frame buildings based on simplified and nonlinear dynamic analyses

  • Borzi, B.;Vona, M.;Masi, A.;Pinho, R.;Pola, D.
    • Earthquakes and Structures
    • /
    • 제4권2호
    • /
    • pp.157-179
    • /
    • 2013
  • Vulnerability studies on the existing building stock require that a large number of buildings is analyzed to obtain statistically significant evaluations of the seismic performance. Therefore, analytical evaluation methods need to be based on simplified methodologies of analysis which can afford the treatment of a large building population with a reasonable computational effort. Simplified Pushover-Based Earthquake Loss Assessment approach (SP-BELA), where a simplified methodology to identify the structural capacity of the building through the definition of a pushover curve is adopted, was developed on these bases. Main objective of the research work presented in this paper is to validate the simplified methodology implemented in SP-BELA against the results of more sophisticated nonlinear dynamic analyses (NLDAs). The comparison is performed for RC buildings designed only to vertical loads, representative of the "as built" in Italy and in Mediterranean countries with a building stock very similar to the Italian one. In NLDAs the non linear and degrading behaviour, typical of the structures under consideration when subjected to high seismic loads, is evaluated using models able to capture, with adequate accuracy, the non linear behaviour of RC structural elements taking into account stiffness degradation, strength deterioration, and pinching effect. Results show when simplified analyses are in good agreement with NLDAs. As a consequence, unsatisfactory results from simplified analysis are pointed out to address their current applicability limits.

Bayesian demand model based seismic vulnerability assessment of a concrete girder bridge

  • Bayat, M.;Kia, M.;Soltangharaei, V.;Ahmadi, H.R.;Ziehl, P.
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.337-343
    • /
    • 2020
  • In the present study, by employing fragility analysis, the seismic vulnerability of a concrete girder bridge, one of the most common existing structural bridge systems, has been performed. To this end, drift demand model as a fundamental ingredient of any probabilistic decision-making analyses is initially developed in terms of the two most common intensity measures, i.e., PGA and Sa (T1). Developing a probabilistic demand model requires a reliable database that is established in this paper by performing incremental dynamic analysis (IDA) under a set of 20 ground motion records. Next, by employing Bayesian statistical inference drift demand models are developed based on pre-collapse data obtained from IDA. Then, the accuracy and reasonability of the developed models are investigated by plotting diagnosis graphs. This graphical analysis demonstrates probabilistic demand model developed in terms of PGA is more reliable. Afterward, fragility curves according to PGA based-demand model are developed.

Seismic vulnerability assessment of low-rise irregular reinforced concrete structures using cumulative damage index

  • Shojaei, Fahimeh;Behnam, Behrouz
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.407-422
    • /
    • 2017
  • Evaluating seismic performance of urban structures for future earthquakes is one of the key prerequisites of rehabilitation programs. Irregular structures, as a specific case, are more susceptible to sustain earthquake damage than regular structures. The study here is to identify damage states of vertically irregular structures using the well-recognized Park-Ang damage index. For doing this, a regular 3-story reinforced concrete (RC) structure is first designed based on ACI-318 code, and a peak ground acceleration (PGA) of 0.3 g. Some known vertical irregularities such as setback, short column and soft story are then applied to the regular structure. All the four structures are subjected to seven different earthquakes accelerations and different amplitudes which are then analyzed using nonlinear dynamic procedure. The damage indices of the structures are then accounted for using the pointed out damage index. The results show that the structure with soft story irregularity sustains more damage in all the earthquake records than the other structures. The least damage belongs the regular structure showing that different earthquake with different accelerations and amplitudes have no significant effect on the regular structures.

Comparison of Seismic Retrofit Efficiencies of Base Isolation Systems for Existing Bridges

  • 조효남;엄원석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.81-86
    • /
    • 2000
  • In recent modern protective systems have been introduced to reduce the vulnerability of bridges to seismic events. These protective systems include base isolation devices of different types, damping devices and active control devices. The objective of this study is to analytically evaluate the efficiency of a seismic retrofit scheme using base isolation systems, such as lead rubber bearings and sliding isolators. In this study, a triaxial model was used, which is capable of accurately developing the behavior of sliding isolators including the influence of the changing vertical force and velocity on the friction coefficients. Seismic response analyses of the bridge before and after retrofit were carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-BRIDGE. To evaluate the efficiency of a retrofit scheme using triaxial isolators, a comparative study of performances of above two base isolation systems was conducted, and the numerical results show that the triaxial isolation solution can effectively reduce the sheat forces at the piers for the vertical ground motion.

  • PDF

Probabilistic seismic and fire assessment of an existing reinforced concrete building and retrofit design

  • Miano, Andrea;de Silva, Donatella;Compagnone, Alberto;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.481-494
    • /
    • 2020
  • In this paper, a probability-based procedure to evaluate the performance of existing RC structures exposed to seismic and fire actions is presented. The procedure is demonstrated with reference to an existing old school building, located in Italy. The vulnerability assessment of the building highlights deficiencies under both static and seismic loads. Retrofit operations are designed to achieve the seismic safety. The idea of the work consists in assessing the performance of the existing and retrofitted building in terms of both the seismic and fire resistance. The seismic retrofit and fire resistance upgrading follow different paths, depending on the specific configuration of the building. A good seismic retrofit does not entail an improving of the fire resistance and vice versa. The goal of the current work is to study the variation of response due to the uncertainties considered in records/fire curves selection and to carry out the assessment of the studied RC structure by obtaining fragility curves under the effect of different records/temperature. The results show the fragility curves before and after retrofit operations and both in terms of seismic performance and fire resistance performance, measuring the percent improving for the different limit states.

원거리와 근거리 지진파의 특성을 고려한 항만 컨테이너 크레인의 지진취약도 분석 (Seismic Fragility Analysis of Container Crane Considering Far-Fault and Near-Fault Ground Motion Characteristics)

  • 박주현;민지영;이종한
    • 한국지진공학회논문집
    • /
    • 제27권2호
    • /
    • pp.83-90
    • /
    • 2023
  • The recent increase in earthquake activities has highlighted the importance of seismic performance evaluation for civil infrastructures. In particular, the container crane essential to maintaining the national logistics system with port operation requires an exact evaluation of its seismic response. Thus, this study aims to assess the seismic vulnerability of container cranes considering their seismic characteristics. The seismic response of the container crane should account for the structural members' yielding and buckling, as well as the crane wheel's uplifting derailment in operation. The crane's yielding and buckling limit states were defined using the stress of crane members based on the load and displacement curve obtained from nonlinear static analysis. The derailment limit state was based on the height of the rail, and nonlinear dynamic analysis was performed to obtain the seismic fragility curves considering defined limit states and seismic characteristics. The yield and derailment probabilities of the crane in the near-fault ground motion were approximately 1.5 to 4.7 and 2.8 to 6.8 times higher, respectively, than those in the far-fault ground motion.