• Title/Summary/Keyword: Seismic resistance

Search Result 471, Processing Time 0.027 seconds

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He;Michael C.H. Yam;Ke Ke;Xuhong Zhou;Huanyang Zhang;Zi Gu
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.773-791
    • /
    • 2023
  • Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

Seismic Analysis of Firefighting Pipe Networks (소방배관 형상에 따른 배관 내진해석)

  • Choi, Ho-Sung;Lee, Jae-Ou
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.149-154
    • /
    • 2019
  • The stability of firefighting pipes is crucial in the event of an earthquake. In Korea, specification-based designs are used in accordance with NFSC. However, engineering performance-based designs are used for buildings that have special requirements. For firefighting pipes, tree type pipe networks are usually utilized in buildings; however, they are characterized by several limitations. Hence, grid type and loop type networks are being utilized lately. Earthquake-resistant designs for firefighting pipes in Korea utilize NFPA 13 as the cookbook. Nevertheless, an engineering analysis is required to verify its reliability. The NFPA 13 standard used in Korea is a design method for engineers who lack earthquake engineering analysis knowledge of pipes and adapt ASCE and ASME guidelines. Earthquake resistant designs in Korea review braces only. Hence, various analyses under load conditions, such as the internal pressure of a pipe, force exerted by a continuous load, and an earthquake, are required to ensure reliability. An engineering earthquake-resistance analysis showed that tree type pipe networks are less stable than grid and loop type pipe networks. A comparison of earthquake-resistance analysis based on stress and strain revealed that strain analysis exhibited a conservative result value in the range of over-stress. Therefore, for the earthquake-resistance analysis of pipes, it is rational that engineers perform analysis to achieve the required standards through engineering analysis rather than uniform calculations, which should also be analyzed considering various analysis conditions.

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.

Earthquake Resistance Design for a Typical Bridge Substructure (일반교량 하부구조의 내진설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2011
  • For the earthquake resistance design designer should provide that structural yielding process is principally designed with the ductile failure mechanism. In order to get the ductile failure mechanism for typical bridges, pier columns yielding should occur before that of connections. However domestic bridge design with unnecessary stiff substructure leads to unnecessary seismic loads and makes it difficult to get the ductile failure mechanism. Such a problem arises from the situation that earthquake resistant design is not carried out in the preliminary design step. In this study a typical bridge is selected as an analysis bridge and design strengths for connections and pier columns are determined in the preliminary design step by carrying out earthquake resistant design. It is shown through this procedure that it is possible to get the ductile failure mechanism with structural members determined by other design.

Effect of Edge Confinement on Deformation Capacity in the Isolated RC Structural Walls (벽체 단부의 횡보강근 양에 따른 변형능력의 평가)

  • 한상환;오영훈;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.101-112
    • /
    • 1999
  • Structural walls have been mostly used for the design of reinforced concrete buildings in seismic areas because they play a role as an efficient bracing system and offer great potential for lateral load resistance and drift control. The lateral resistance system for the earthquake load should be designed to have enough ductility and stable hysteretic response in the critical regions where plastic deformation occurred beyond yielding. The behavior of the reinforced concrete element to experience large deformation in the critical areas by a major earthquake is affected by the performance of the confined core concrete. Thus, the confinement of concrete by suitable arrangements of transverse reinforcement results in a significant increase in both the strength and ductility of compressed concrete. This paper reports the experimental results of reinforced concrete structural walls for wall-type apartment structure under axial loads and cyclic reversal of lateral loads with different confinement of the boundary elements. The results show that confinement of the boundary element by open 'U'-bar and cross tie is effective. The shear strength capacity is not increased by the confinement but deformation capacity is improve.

An Experimental Evaluation of Bending and Shear Resisting Strengths for Wire-Integrated Deck Plate System using Lightweight Concrete (경량콘크리트를 사용한 철선일체형 바닥구조의 휨내력 및 전단내력 실험적 평가)

  • Lee, Seong-Hui;Bang, Jung-Seok;Won, Yong-An;Ryoo, Jae-Yong;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.275-282
    • /
    • 2011
  • A recent development of seismic design, which is required among environmentally friendly members, increased the concern on light-weight concrete. Extending around the building, the structural design which is applied for light-weight concrete has been increased. This study therefore evaluates the bending resistance and the shear resistance involved using four specimens that were manufactured and tested. The parameters used in this study exist. This study investigates the structural performance of composite slab using light-weight concrete with KCI (2007).

Long-term Behavior of Precast Circular Composite Piers with Bonded Tendons (강연선으로 긴장한 강재매입형 조립식 합성교각의 장기거동)

  • Yoon, Jae-Young;Shim, Chang-Su;Chung, Young-Soo;Lim, Hyun-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.205-208
    • /
    • 2008
  • Steel-embedded composite piers can enhance the resistance of core concrete by confinement of the steel elements and also can strengthen the stability of the embedded steel elements by concrete parts, so that the resistance of the composite members and seismic requirements can be provided without increasing section dimensions and self-weight. While modular composite piers with single segment do not need prestressing, precast segment composite piers with multiple segments need to have prestressing to prevent excessive cracking at the joints. Initial stresses and deformation by the introduced prestress are changed by long-term properties of concrete and need to be considered in the design. This paper deals with the prestress losses by the measurement of load cells, strains of reinforcements, concrete and embedded steel tubes.

  • PDF