• Title/Summary/Keyword: Seismic reflection method

Search Result 98, Processing Time 0.115 seconds

Application of Geophysical Prospecting Method to Calculate Basic Data of Limestone Deposit Production (석회암 매장량 산출의 기초자료 계산을 위한 지구물리탐사법의 적용)

  • 서백수;김영화;진호일
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2001
  • Until recently, limestone yield production is mainly depend on geological investigation and boring. In the study seismic and electrical method are applied to calculate the basic data of limestone yield production. the result of geophysical prospecting, the depth of bed rock is approximately 17m. And there is a slightly difference between the limestone layer boundary which is drawn by electrical prospecting method and that of geological investigation.

  • PDF

High Resolution for Shallow Seismic Reflection (Applied to the Underground Cavity) (천부층 지진파 반사에 대한 해상도 (지하 공동에 응용))

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 1993
  • The high resolution studies for shallow seismic reflection are carried out using 24-channel seismograph and the high sensitivity geophone(50-500Hz). In order to study the underground structures such as small faults, fractures, cracks and cavities, it is of great importance to enhance high resolution of the seisrnic records for the targets vertically and laterally. In analysis of high resolution seismic reflection, Nyquist frequency($F_N$) should be lager than the highest frequency in the records and the highest wave number should not be exceed the Nyquist wave number($1/2{\Delta}x$). The highest frequency above the Nyquist will be removed using low pass filter or antialias filter. The trace interval Ax should be taken into account so that the highest wave number(f/v) can be less than $1/2{\Delta}x$. The Fraunhofer diffraction of a hyperbola seismic section above the tunnel appeares on the common offset method, and little first arrivals of direct wave on the single-end shooting, delayed strong impulsive reflections are also shown above the tunnel. Ray Method(Cherveney and Psencik, 1983) also represents the same results that the reflected waves from the tunnel are delayed and single impulsive with little first arrivals, while transrnitted waves through the tunnel are delayed with low frequency.

  • PDF

A study about frequency domain analysis of impact-wave for detecting of structural defects in the concrete structure (구조물의 안전진단을 위한 충격파의 주파수 영역 탐사에 관한 연구)

  • Suh Baeksoo;;Kim Hyoungjun;Lee Sangchul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.165-180
    • /
    • 2005
  • Impact seismic wave test is a method for nondestructive testing of concrete structure using of stress wave which is propagated and reflected from internal flaws within concrete structure and external surface, In this study, we performed non-destructive testing using impact seismic wave test for safety diagnosis of civil engineering structures. For this, I've compared and analized the result in the way of reflective method mostly using on one-dimension such as tunnel lining, and penetration method using the way of cross hole and tomography.

  • PDF

Application of the tri-axial drill-bit VSP method to drilling for geological survey in civil engineering

  • Soma Nobukazu;Utagawa Manabu;Seto Masahiro;Asanuma Hiroshi
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.70-79
    • /
    • 2004
  • We have examined the applicability of the triaxial drill-bit VSP method (TAD-VSP) to the geological survey of possible sites for a high-level radioactive waste disposal repository. The seismic energy generated by a drill bit is measured by a downhole multi-component detector, and the resulting signals are processed to image the geological structure deep underground. In order to apply the TAD-VSP method to civil-engineering-scale drilling, we have developed a small but highly sensitive and precise three-component downhole seismic measurement system, and recorded drill-bit signals at a granite quarry. We have successfully imaged discontinuities in the granite, possibly related to fractures, as highly reflective zones. The discontinuities imaged by the TAD-VSP method correlate well with the results of other borehole observations. In conclusion, the TAD-VSP method is usable in geological investigations for civil engineering because the equipment is compact and it is simple to acquire the drill-bit signal.

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Seismic reflection survey in a tidal flat: A case study for the Mineopo area (갯벌 지역에서의 탄성파 탐사: 민어포 조간대 지역의 사례)

  • Jou Hyeong-Tae;Kim Han-Joon;Lee Gwang-Hoon;Choi Dong-Lim;Kim Min-Ji;Cho Hyun-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.67-84
    • /
    • 2002
  • A shallow high-resolution seismic reflection survey was carried out at the Mineopo tidal flat on the western coast of Korea. The purpose of the survey was to investigate shallow sedimentary structure of the tidal (fat associated with the recent sea level change. A total of 795 shots were generated at 1 m interval from a 5-kg hammer source and recorded on 48 channels of 100 Hz geophones along two mutually perpendicular profiles. The water-saturated ground condition resulted in suppressed ground rolls by significantly decreasing rigidity. In addition, seismic velocities over 1500 m/s provided easy segregation of reflected arrivals from lower velocity noise. As a consequence, seismic sections were created that are high in resolution and signal to noise ratio as well. The stack sections show that the tidal flat consists of 5 sedimentary sequences above acoustic basement. Although deposition is largely characterized by the transgressive sedimentary facies resulting from sea level rise, erosional surfaces are well-resolved within the sequences.

  • PDF

A Study on Interpretation of Seismic Reflection Traveltimes in Anisotropic Layers (이방성 지층에서의 탄성파 반사 주시자료의 해석에 관한 연구)

  • Hwang, Se Ho;Yang, Seung Jin;Jang, Seong Hyung;Kim, Jung Yul
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.201-207
    • /
    • 1994
  • This paper presents a technique to determine anisotropic elastic coefficients from traveltimes of seismic reflections or vertical seismic profiling (VSP) in tranversely isotropic layers whose thicknesses are known. The elastic coefficients are calculated from three different velocities (vertical, horizontal and skew velocities) which are determined from skew hyperbolic traveltimes by least-square fitting or semblance analysis. This interpretation technique is tested for synthetic traveltime data obtained for transversely isotropic models. The test shows that the anisotropic elastic constants of the models are determined accurately by this interpretation method.

  • PDF

Impedance Estimation from 3-D Seismic Data (3차원 탄성파로부터 매질의 임피던스 산출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • The paper discusses a data processing methodology that derives a three dimensional porosity volume information from the 3-D seismic dataset. The methodology consists of preprocessing and inversion procedures. The purpose of the preprocessing is balancing the amplitudes of seismic traces by using reflectivity series derived from sonic and density logs. There are eight sonic logs are available in the study area; therefore, we can compute only 8 balance functions. The balance function for every seismic trace was derived from these 8 balance functions by kriging. In order to derive a wide-band acoustic impedance --similar to the one can be derived from a sonic log- from a band-limited reflection seismogram, we need to recover missing low- and high-frequency information of the seismic trace. For that Purpose we use the autoregressive method.

  • PDF

CMP cross-correlation analysis of multi-channel surface-wave data

  • Hayashi Koichi;Suzuki Haruhiko
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we demonstrate that Common Mid-Point (CMP) cross-correlation gathers of multi-channel and multi-shot surface waves give accurate phase-velocity curves, and enable us to reconstruct two-dimensional (2D) velocity structures with high resolution. Data acquisition for CMP cross-correlation analysis is similar to acquisition for a 2D seismic reflection survey. Data processing seems similar to Common Depth-Point (CDP) analysis of 2D seismic reflection survey data, but differs in that the cross-correlation of the original waveform is calculated before making CMP gathers. Data processing in CMP cross-correlation analysis consists of the following four steps: First, cross-correlations are calculated for every pair of traces in each shot gather. Second, correlation traces having a common mid-point are gathered, and those traces that have equal spacing are stacked in the time domain. The resultant cross-correlation gathers resemble shot gathers and are referred to as CMP cross-correlation gathers. Third, a multi-channel analysis is applied to the CMP cross-correlation gathers for calculating phase velocities of surface waves. Finally, a 2D S-wave velocity profile is reconstructed through non-linear least squares inversion. Analyses of waveform data from numerical modelling and field observations indicate that the new method could greatly improve the accuracy and resolution of subsurface S-velocity structure, compared with conventional surface-wave methods.

Shallow Gas Exploration in the Pohang Basin Transition Zone (포항분지 전이대에서 천부가스 탐사)

  • Lee, Donghoon;Kim, Byoung-Yeop;Kim, Ji-Soo;Jang, Seonghyung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • For surveying shallow gas reservoirs in the Pohang basin, we proposed a seismic exploration method applicable to the transition zone in which land and marine areas are connected. We designed the seismic acquisition geometry considering both environments. We installed land nodal receivers on the ground and employed vibroseis and airgun sources in both land and marine areas. For seismic exploration in the transition zone, specific acquisition and processing techniques are required to ensure precise matching of reflectors at the boundary between the onshore and offshore regions. To enhance the continuity of reflection events on the seismic section, we performed amplitude and phase corrections with respect to the source types and applied a static correction. Following these processing steps, we obtained a seismic section showing connected reflectors around the boundary in the transition zone. We anticipate that our proposed seismic exploration method can also be used for fault detection in the transition zone.