• Title/Summary/Keyword: Seismic performance objective

Search Result 203, Processing Time 0.024 seconds

Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials (신보강재로 보수 보강한 기둥의 구조 성능 개선)

  • Oh, Chang-Hak;Han, Sang-Whan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF

Vibration Control of Adjacent Buildings using a Smart Sky-bridge (스마트 스카이브릿지를 이용한 인접건물의 진동제어)

  • Kang, Joo-Won;Chae, Seoung-Hun;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.93-102
    • /
    • 2010
  • In this study, a smart sky-bridge composed of MR damper and FPS has been proposed and vibration control performance of a smart sky-bridge for the connected buildings was investigated. To this end, 10-story and 20-story building structures connected by a smart sky-bridge were selected as example structures and El Centro and Kobe earthquakes, which have near and far fault ground motion characteristics respectively, were used for time history analyses. In order to effectively control the smart sky-bridge, fuzzy logic controller was developed and multi-objective genetic algorithm was used to optimize fuzzy logic controllers. Based on optimization results, it has been seen that there is a trade-off between seismic responses of 10-story and 20-story buildings and a suite of Pareto optimal solutions of fuzzy logic controllers for seismic response control can be obtained by multi-objective genetic algorithm. It is shown from numerical study that seismic responses of adjacent buildings can be efficiently controlled by using a smart sky-bridge.

  • PDF

Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.221-230
    • /
    • 2017
  • One of the important phases of probabilistic performance-based methodology is establishing appropriate probabilistic seismic demand models (PSDMs). These demand models relate ground motion intensity measures (IMs) to demand measures (DMs). The objective of this paper is selection of the optimal IMs in probabilistic seismic demand analysis (PSDA) of the RC high-rise buildings. In selection process features such as: efficiency, practically, proficiency and sufficiency are considered. RC high-rise buildings with core wall structural system are selected as a case study building class with the three characteristic heights: 20-storey, 30-storey and 40-storey. In order to determine the most optimal IMs, 720 nonlinear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes and distances to source, and for various soil types, thus taking into account uncertainties during ground motion selection. The non-linear 3D models of the case study buildings are constructed. A detailed regression analysis and statistical processing of results are performed and appropriate PSDMs for the RC high-rise building are derived. Analyzing a large number of results it are adopted conclusions on the optimality of individual ground motion IMs for the RC high-rise building.

Effect of introducing RC infill on seismic performance of damaged RC frames

  • Turk, Ahmet Murat;Ersoy, Ugur;Ozcebe, Guney
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.469-486
    • /
    • 2006
  • The main objective of this study was to investigate the seismic behavior of damaged reinforced concrete frames rehabilitated by introducing cast in place reinforced concrete infills. Four bare and five infilled frames were constructed and tested. Each specimen consisted of two (twin) 1/3-scale, one-bay and two-story reinforced concrete frames. Test specimens were tested under reversed-cyclic lateral loading until considerable damage occurred. RC infills were then introduced to the damaged specimens. One bare specimen was infilled without being subjected to any damage. All infilled frames were then tested under reversed-cyclic lateral loading until failure. While some of the test frames were detailed properly according to the current Turkish seismic code, others were built with the common deficiencies observed in existing residential buildings. The variables investigated were the effects of the damage level and deficiencies in the bare frame on the seismic behavior of the infilled frame. The deficiencies in the frame were; low concrete strength, inadequate confinement at member ends, 90 degree hooks in column and beam ties and inadequate length of lapped splices in column longitudinal bars made above the floor levels. Test results revealed that both the lateral strength and lateral stiffness increased significantly with the introduction of reinforced concrete infills even when the frame had the deficiencies mentioned above. The deficiency which affected the behavior of infilled frames most adversely was the presence of lap splices in column longitudinal reinforcement.

Seismic behaviour of repaired superelastic shape memory alloy reinforced concrete beam-column joint

  • Nehdi, Moncef;Alam, M. Shahria;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.329-348
    • /
    • 2011
  • Large-scale earthquakes pose serious threats to infrastructure causing substantial damage and large residual deformations. Superelastic (SE) Shape-Memory-Alloys (SMAs) are unique alloys with the ability to undergo large deformations, but can recover its original shape upon stress removal. The purpose of this research is to exploit this characteristic of SMAs such that concrete Beam-Column Joints (BCJs) reinforced with SMA bars at the plastic hinge region experience reduced residual deformation at the end of earthquakes. Another objective is to evaluate the seismic performance of SMA Reinforced Concrete BCJs repaired with flowable Structural-Repair-Concrete (SRC). A $\frac{3}{4}$-scale BCJ reinforced with SMA rebars in the plastic-hinge zone was tested under reversed cyclic loading, and subsequently repaired and retested. The joint was selected from an RC building located in the seismic region of western Canada. It was designed and detailed according to the NBCC 2005 and CSA A23.3-04 recommendations. The behaviour under reversed cyclic loading of the original and repaired joints, their load-storey drift, and energy dissipation ability were compared. The results demonstrate that SMA-RC BCJs are able to recover nearly all of their post-yield deformation, requiring a minimum amount of repair, even after a large earthquake, proving to be smart structural elements. It was also shown that the use of SRC to repair damaged BCJs can restore its full capacity.

Performance Based Design of Friction Dampers for Seismically Excited Structures (지진하중을 받는 구조물의 성능에 기초한 마찰감쇠기 설계)

  • 민경원;김형섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.17-24
    • /
    • 2003
  • The main objective of this paper is to evaluate the control performance of a coulomb friction damper(CFD) for controlling the inelastic behavior of seismically excited structures, The seismic performances of various buildings are evaluated using capacity spectrum method(CSM), and the additional dampings are calculated If the evaluated performance levels of the buildings are below the target level. Maximum friction force of the CFD to achieve additional damping is provided using the concept of equivalent viscous damping, Numerical simulations for single degree of freedom(SDOF) systems with various structural periods and post yield stiffness ratios demonstrate the effectiveness of the proposed procedure.

Seismic Performance Evaluation of RC Bridge Piers with Limited Ductility by the Pseudo-Dynamic Test (한정연성 철근콘크리트 교각의 유사동적 실험에 의한 내진 성능 평가)

  • Chung, Young-Soo;Park, Chang-Kyu;Park, Jin-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.705-714
    • /
    • 2003
  • Even though Korean peninsula is located in regions of moderate seismic risks, current seismic design provisions of the roadway bridge design code have adopted the AASHTO code which is based on the requirements for high seismic regions. The objective of this research is to investigate the seismic performance of circular reinforced concrete (RC) bridge piers with limited ductility, which may be desirable in low or moderate seismic regions, such as in Korea. Four test specimens were designed and constructed. The reference specimen was designed with longitudinal steel ratio as 1.01% and the confinement reinforcement ratio as 0.13% without considering earthquake, and three other test specimens were designed in accordance with a limited-ductility concept as 0.3% for the confinement steel ratio. This confinement ratio is 0.32 times of minimum lateral reinforcement specified in current seismic design provisions, and 2.3 times of lateral reinforcement required in nonseismic design provisions. The pseudo-dynamic test was carried out to evaluate the seismic performance of full-scale specimens in size of 1.2m diameter and 4.8m height. Judging from the experiment, the reference specimen was not satisfactory for the demand displacement ductility ${\mu}$=5.0, but three limited-ductility specimens appeared to have the displacement ductility of more than 5.

Introduction and Necessity of concept of Demand for Performance-Based Design (성능기반설계에서의 요구성능의 개념 정의 및 필요성)

  • Lee, Byung-Goog;Park, Tae-Hyo;Lee, Sang-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.125-128
    • /
    • 2008
  • Studies for structure design has conducted in many research institutions. A basic concept of Performance-Based Design for structures was presented in seismic fields. Hereafter, Demand were defined to communicate owner's demand to designer by several research institution. Performance-Based Design is guaranteed by an accurate analysis from hazard affected to structures and from social, economical and environmental effects. It is essential to define Performance Level and Performance Objective to grasp accurate demand for structures. In this study, Performance Level and Performance Objective in ATC-40, FEMA-273 and Eurocode were defined to introduce Performance-Based Design.

  • PDF

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

Development of Control Algorithm for Effective Simultaneous Control of Multiple MR Dampers (다중 MR 감쇠기의 효과적인 동시제어를 위한 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.