• 제목/요약/키워드: Seismic performance assessment

검색결과 334건 처리시간 0.027초

국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률 (Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard)

  • 김대환;김태완;추유림
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

Insights from existing earthquake loss assessment research in Croatia

  • Hadzima-Nyarko, Marijana;Sipos, Tanja Kalman
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.365-375
    • /
    • 2017
  • Seismic risk management has two main technical aspects: to recommend the construction of high-performance buildings and other structures using earthquake-resistant designs or evaluate existing ones, and to prepare emergency plans using realistic seismic scenarios. An overview of seismic risk assessment methodologies in Croatia is provided with details regarding the components of the assessment procedures: hazard, vulnerability and exposure. For Croatia, hazard is presented with two maps and it is expressed in terms of the peak horizontal ground acceleration during an earthquake, with the return period of 95 or 475 years. A standard building typology catalogue for Croatia has not been prepared yet, but a database for the fourth largest city in Croatia is currently in its initial stage. Two methods for earthquake vulnerability assessment are applied and compared. The first is a relatively simple and fast analysis of potential seismic vulnerability proposed by Croatian researchers using damage index (DI) as a numerical value indicating the level of structural damage, while the second is the Macroseismic method.

적층 석탑의 내진성능 평가요소 (Assessment Factors for Seismic Performance of Multi-block Stone Pagodas)

  • 김남희;구인영;홍성걸
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.19-29
    • /
    • 2019
  • Recent earthquakes in Korea caused some damages to stone pagodas and thereby awakened the importance of earthquake preparedness. Korean stone pagodas which have been built with very creative style of material use and construction method are worthy of world heritage. Each stone pagoda consists of three parts: top; body; and base. However each tower is uniquely defined by its own features, which makes it more difficult to generalize the seismic assessment method for stone pagodas. This study has focused on qualitative preliminary evaluation of stone pagodas that enables us to compare the relative seismic performance across major aspects among many various Korean pagodas. Specifically an analytical model for multi-block stone pagodas is to be proposed upon the investigation of structural characteristics of stone pagoda and their dynamic behavior. A strategy for seismic evaluation of heritage stone pagodas is to be established and major evaluation factors appropriate for the qualitative evaluation are identified. The evaluation factors for overall seismic resisting behavior of stone pagodas are selected based on the dynamic motions of a rigid block and its limit state. Numerical simulation analysis using discrete element method is performed to analyze the sensitivity of each factor to earthquake and discuss some effects on seismic performance.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : II. 성능평가 (Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: II. Performance Assessment)

  • 김태훈;김영진;강형택;신현목
    • 대한토목학회논문집
    • /
    • 제26권2A호
    • /
    • pp.351-361
    • /
    • 2006
  • 이 연구에서는 원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가를 위한 비선형 유한요소해석 기법을 제시하였다. 이 논문에서는 원형 철근콘크리트 교각의 이력거동의 예측에 근거한 손상지수를 제시하였다. 손상지수는 지진하중하의 원형 철근콘크리트 교각의 손상을 수치적으로 정량화하는 방법으로서 제안되었다. 제안한 해석기법을 실험된 철근콘크리트 교각에 적용하여 비교, 분석하였다. 제안된 해석기법은 조사된 실험체에 대하여 하중단계에 따라 내진성능을 정확하게 예측하였다.

Time-dependent seismic risk analysis of high-speed railway bridges considering material durability effects

  • Yan Liang;Ying-Ying Wei;Ming-Na Tong;Yu-Kun Cui
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.275-288
    • /
    • 2023
  • Based on the crucial role of high-speed railway bridges (HSRBs) in the safety of high-speed railway operations, it is an important approach to mitigate earthquake hazards by proceeding with seismic risk assessments in their whole life. Bridge seismic risk assessment, which usually evaluates the seismic performance of bridges from a probabilistic perspective, provides technical support for bridge risk management. The seismic performance of bridges is greatly affected by the degradation of material properties, therefore, material damage plays a nonnegligible role in the seismic risk assessment of the bridge. The effect of material damage is not considered in most current studies on seismic risk analysis of bridges, nevertheless. To fill the gap in this area, in this paper, a nonlinear dynamic time-history analysis has been carried out by establishing OpenSees finite element model, and a seismic vulnerability analysis is carried out based on the incremental dynamic analysis (IDA) method. On this basis, combined with the site risk analysis, the time-dependent seismic risk analysis of an offshore three-span HSRB in the whole life cycle has been conducted. The results showed that the seismic risk probabilities of both components and system of the bridge increase with the service time, and their seismic risk probabilities increase significantly in the last service period due to the degradation of the material strength, which demonstrates that the impact of durability damage should be considered when evaluating the seismic performance of bridges in the design and service period.

Seismic performance assessment of R.C. bridge piers designed with the Algerian seismic bridges regulation

  • Kehila, Fouad;Kibboua, Abderrahmane;Bechtoula, Hakim;Remki, Mustapha
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.701-713
    • /
    • 2018
  • Many bridges in Algeria were constructed without taking into account the seismic effect in the design. The implantation of a new regulation code RPOA-2008 requires a higher reinforcement ratio than with the seismic coefficient method, which is a common feature of the existing bridges. For better perception of the performance bridge piers and evaluation of the risk assessment of existing bridges, fragility analysis is an interesting tool to assess the vulnerability study of these structures. This paper presents a comparative performance of bridge piers designed with the seismic coefficient method and the new RPOA-2008. The performances of the designed bridge piers are assessed using thirty ground motion records and incremental dynamic analysis. Fragility curves for the bridge piers are plotted using probabilistic seismic demand model to perform the seismic vulnerability analysis. The impact of changing the reinforcement strength on the seismic behavior of the designed bridge piers is checked by fragility analysis. The fragility results reveal that the probability of damage with the RPOA-2008 is less and perform well comparing to the conventional design pier.

내진성능평가시 횡보강근이 없는 RC 보-기둥 접합부의 전단내력 평가 (Seismic Assessment of Shear Capacity of RC Beam-Column Joints Without Transverse Re-bars)

  • 이영욱
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.249-259
    • /
    • 2019
  • To study the seismic resistance of the shear capacity of the RC beam-column joints of two-story and four-story RC buildings, sample buildings are designed with ordinary moment resisting frame. For the shear capacity of joints, the equations of FEMA 356 and NZ seismic assessment are selected and compared. For comparison, one group of buildings is designed only for gravity loads and the other group is designed for seismic and gravity loads. For 16 cases of the designed buildings, seismic performance point is evaluated through push-over analysis and the capacity of joint shear strength is checked. Not only for the gravity designed buildings but also for seismic designed buildings, the demand of joint shear is exceeding the capacity at exterior joints. However, for interior joint, the demand of joint shear exceeds the capacity only for one case. At exterior joints, the axial load stress ratio is lower than 0.21 for gravity designed buildings and 0.13 for seismic designed buildings.

국내 고층 비내진 철근콘크리트 벽식 아파트의 지진취약도 평가 (Seismic Fragility Assessment for Korean High-Rise Non-Seismic RC Shear Wall Apartment Buildings)

  • 전성하;신동현;박지훈
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.293-303
    • /
    • 2020
  • Seismic fragility was assessed for non-seismic reinforced concrete shear walls in Korean high-rise apartment buildings in order to implement an earthquake damage prediction system. Seismic hazard was defined with an earthquake scenario, in which ground motion intensity was varied with respect to prescribed seismic center distances given an earthquake magnitude. Ground motion response spectra were computed using Korean ground motion attenuation equations to match accelerograms. Seismic fragility functions were developed using nonlinear static and dynamic analysis for comparison. Differences in seismic fragility between damage state criteria including inter-story drifts and the performance of individual structural members were investigated. The analyzed building had an exceptionally long period for the fundamental mode in the longitudinal direction and corresponding contribution of higher modes because of a prominently insufficient wall quantity in such direction. The results showed that nonlinear static analyses based on a single mode tend to underestimate structural damage. Moreover, detailed assessments of structural members are recommended for seismic fragility assessment of a relatively low performance level such as collapse prevention. On the other hand, inter-story drift is a more appropriate criterion for a relatively high performance level such as immediate occupancy.

손상지수를 이용한 철근콘크리트 교각의 내진성능평가 (Seismic Performance Assessment of Reinforced Concrete Bridge Piers using Damage Indices)

  • 김태훈;정영수;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.144-147
    • /
    • 2003
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers using damage indices. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage indices aim to provide a means of quantifying numerically the damage reinforced concrete bridge piers sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers is verified by comparison with the reliable experimental results.

  • PDF