• 제목/요약/키워드: Seismic member

검색결과 250건 처리시간 0.02초

Parameters influencing seismic response of horizontally curved, steel, I-girder bridges

  • Linzell, Daniel G.;Nadakuditi, Venkata P.
    • Steel and Composite Structures
    • /
    • 제11권1호
    • /
    • pp.21-38
    • /
    • 2011
  • This study examines the influence of curved, steel, I-girder bridge configuration on girder end reactions and cross frame member forces during seismic events. Simply-supported bridge finite element models were created and examined under seismic events mimicking what could be experienced in AASHTO Seismic Zone 2. Bridges were analyzed using practical ranges of: radius of curvature; girder and cross frame spacings; and lateral bracing configuration. Results from the study indicated that: (1) radius of curvature had the greatest influence on seismic response; (2) interior (lowest radius) girder reactions were heavily influenced by parameter variations and, in certain instances, uplift at their bearings could be a concern; (3) vertical excitation more heavily influenced bearing and cross frame seismic response; and (4) lateral bracing helped reduce seismic effects but using bracing along the entire span did not provide additional benefit over placing bracing only in bays adjacent to the supports.

리브 보강된 콘크리트 충전 HSS 가새부재의 이력 거동 (Seismic Behavior of Concrete-Filled HSS Bracing Members Reinforced by Rib)

  • 한상환;여승민;김욱태
    • 한국강구조학회 논문집
    • /
    • 제17권1호통권74호
    • /
    • pp.53-62
    • /
    • 2005
  • 본 연구의 목적은 가새 골조에서 사용되는 가새 부재를 보강하여 가새 골조의 이력 거동을 향상시키는 것이다. HSS(Hollow Structural Section) 가새 부재는 국부 좌굴의 발생으로 인하여 인장측 성능에 비해 압축측 성능이 취약한 단점이 있다. 국부 좌굴의 심각성을 감소시키기 위하여 가새 부재에 콘크리트를 충전하는 방법이 사용되었다. Lee and Goel(1987)의 연구 결과에 따르면 콘크리트 충전은 HSS 가새 부재의 국부좌굴의 심각성을 감소시켜 파괴 수명을 증가시켰으나, 가새 부재 중앙부의 국부좌굴을 방지하지 못하여 지속적인 압축 강도의 저감이 나타났다. 따라서 본 연구에서는 가새 부재의 압축 강도를 증가시키고 중앙부의 국부 좌굴을 방지하기 위하여 콘크리트 충전 HSS 가새 부재의 중앙부를 리브로 보강한 실험체를 제작하여 실험하였다. 이를 위하여 리브 보강길이를 변수로 한 총 4개의 실물 크기의 가새 부재를 제작하였다. 하중은 압축과 인장이 대칭인 하중이력을 사용하였다. 본 실험에서 좌굴 모드, 사이클 최대 압축강도와 에너지 소산능력에서 나타난 리브 보강 가새 부재의 성능은 리브 보강길이에 따라 다르게 나타났으며, 63%의 길이로 보강한 실험체가 가장 우수한 성능을 나타내었다.

수동형 댐퍼를 장착한 구조물의 동적응답기반 신뢰성 해석 - 제2편: 시스템 파괴확률 산정 (Dynamic Response based System Reliability Analysis of Structure with Passive Damper - Part 2: Assessment of System Failure Probability)

  • 김승민;옥승용
    • 한국안전학회지
    • /
    • 제31권5호
    • /
    • pp.95-101
    • /
    • 2016
  • This study proposes a multi-scale dynamic system reliability analysis of control system as a method of quantitative evaluation of its performance in probabilistic terms. In this second paper, we discuss the control effect of the viscous damper on the seismic performance of the structure-level failure. Since the failure of one structural member does not necessarily cause the collapse of the structural system, we need to consider a set of failure scenarios of the structural system and compute the sum of the failure probabilities of the failure scenarios where the statistical dependence between the failure scenarios should be taken into account. Therefore, this computation requires additional system reliability analysis. As a result, the proposed approach takes a hierarchial framework where the failure probability of a structural member is computed using a lower-scale system reliability with the union set of time-sequential member failures and their statistical dependence, and the failure probability of the structural system is again computed using a higher-scale system reliability with the member failure probabilities obtained by the lower-scale system reliability and their statistical dependence. Numerical results demonstrate that the proposed approach can provide an accurate and stable reliability assessment of the control performance of the viscous damper system on the system failure. Also, the parametric study of damper capacity on the seismic performance has been performed to demonstrate the applicability of the proposed approach through the probabilistic assessment of the seismic performance improvement of the damper system.

Optimum design of steel space truss towers under seismic effect using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.1-12
    • /
    • 2019
  • This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

Seismic response study of tower-line system considering bolt slippage under foundation displacement

  • Jia-Xiang Li;Jin-Peng Cheng;Zhuo-Qun Zhang;Chao Zhang
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.135-143
    • /
    • 2024
  • Once the foundation displacement of the transmission tower occurs, additional stress will be generated on the tower members, which will affect the seismic response of transmission tower-line systems (TTLSs). Furthermore, existing research has shown that the reciprocating slippage of joints needs to be considered in the seismic analysis. The hysteretic behavior of joints is obtained by model tests or numerical simulations, which leads to the low modeling efficiency of TTLSs. Therefore, this paper first utilized numerical simulation and model tests to construct a BP neural network for predicting the skeleton curve of joints, and then a numerical model for a TTLS considering the bolt slippage was established. Then, the seismic response of the TTLS under foundation displacement was studied, and the member stress changes and the failed member distribution of the tower were analyzed. The influence of foundation displacement on the seismic performance were discussed. The results showed that the trained BP neural network could accurately predict the hysteresis performance of joints. The slippage could offset part of the additional stress caused by foundation settlement and reduce the stress of some members when the TTLS with foundation settlement was under earthquakes. The failure members were mainly distributed at the diagonal members of the tower leg adjacent to the foundation settlement and that of the tower body. To accurately analyze the seismic performance of TTLSs, the influence of foundation displacement and the joint effect should be considered, and the BP neural network can be used to improve modeling efficiency.

가압식 브레이싱 보강에 의한 지중박스구조물의 내진성능향상 방법 (Anti-seismic Capacity Improvement of Underground Box Structures Strengthened with Pressure Bracing)

  • 정지승;문인기;민대홍
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.97-102
    • /
    • 2013
  • This paper presents a new strengthening method of underground box structures against seismic loads for anti-seismic capacity improvement. A threaded steel member with pressure devices(so called 'I-bracing pressure system') is used to improve seismic capacity of the RC box structure. The I-bracing pressure system is fixed the corner of opening after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. Two bracing types of strengthening methods were used; conventional bracing method and improved I-bracing pressure system. For the performance evaluation, seismic analyses were performed on moment and shear resisting structures with and without I-bracing pressure system. Numerical results confirmed that the proposed I-bracing pressure system can enhance the seismic capacity of the underground RC box structures.

기존 철근콘크리트 교각의 내진성평가 (Seismic Evaluation of the Existing RC Piers)

  • 전귀현;이지훈
    • 한국지진공학회논문집
    • /
    • 제2권4호
    • /
    • pp.155-168
    • /
    • 1998
  • 본 연구에서는 국내기존 철근콘크리트(RC) 교각의 구조적 특성을 조사.분석하여 단면강도와 변형성능에 미치는 영향을 규명하였으며 이와같은 특성을 고려한 내진성평가절차를 제시하였다 기존 RC교각의 내진성평가를 위해서는 단면휨강도를 지배하는 구요소인 작용축력과 주철근비 및 주철근강도 주철근 항복후 부재변형성능과 전단강도를 지배하는 횡철근비 및 앵커상세 그리고 주철근 부착파괴를 결정하는 주철근의 이음부위치에 대한 상세조사가 요구된다. 국내기존 RC교각은 대부분 횡철근의 앵커가 부적절하고 주철근의 위치가 소성힌지부에 위치하고 있으므로 휨연성거동을 위한 변형성능이 충분히 확보되어있지 못하다 따라서 여기서 제시된 평가절차는 기존 연속교 고정단교각의 내진성평가를 수행하고 그에 따른 적절한 내진보강을 하여 지진에 대한 안전성확보 하는 데 도움이 될 것으로 판단된다.

  • PDF

지진피해를 받은 철근콘크리트 건물의 잔존내진성능평가 (Evaluation of Post-earthquake Seismic Capacity of Reinforced Concrete Buildings suffering from earthquakes)

  • 강대언;이원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.105-108
    • /
    • 2005
  • In damage investigation of building structures suffering from earthquake, estimation of residual seismic capacity is essential in order to access the safety of the building against aftershocks and to judge the necessity of repair and restoration. It has been proposed that an evaluation method for post-earthquake seismic capacity of reinforced concrete buildings based. on the residual energy dissipation capacity (the residual seismic capacity ratio )in lateral force-displacement curve of structural members. The proposed method was adopted in the Japanese 'Damage Level Classification Standard' revised in 200l. To evaluate the residual seismic capacity of RC column, experimental tests with positive and negative cyclic loading was carried out using RC building column specimen. Parameters used by the experiment are deformability and member proportion. From the test results, it is appropriated that the residual seismic capacity of RC buildings damaged by earthquakes is evaluated using the method in the Guideline.

  • PDF

입체 라멘 교각 구조물의 파괴 패턴 및 간이 내진성능 평가법 (Failure Pattern of Space Frame Pier Structures and Simple Check Method for Seismic Performance)

    • 한국지진공학회논문집
    • /
    • 제3권2호
    • /
    • pp.97-106
    • /
    • 1999
  • 많은 수의 기존구조물의 내진보강 여부를 효율적으로 판단하기 위해서는 다단계로 구성되는 평가시스템을 도입하는 것이 바람직하다 본 연구에서는 지진피해를 입은 입체라멘 구조물의 피해원인을 지반 및 구조물의 특성에 따라 조사 검토하였으며 부재의 전단-휨 강도 여유도가 구조물의 내진성능에 밀접한 관계가 있음을 보여주고 있다 전단-휨 강도여유를 이용하여 대상구조물의 내진성능보강여부를 1차적으로 평가할 수 있는 1차 평각법을 제시하였으며 그 유효성을 구조물의 패해도와 비교하여 확인하였다.

  • PDF

Development and Practice of Performance-Based Seismic Design of High-Rise Buildings in China

  • Xiao Congzhen;Li Jianhui;Li Yinbin;Qiao Baojuan;Sun Chao;Wei Yue;Ding Jiannan
    • 국제초고층학회논문집
    • /
    • 제12권3호
    • /
    • pp.209-214
    • /
    • 2023
  • Seismic performance-based design methods are widely used in the field of engineering. This paper introduces the current status of seismic performance-based design methods for high-rise buildings in China, and summarizes latest advancements in seismic performance-based design methods for high-rise buildings in China, with a focus on the design methods based on predetermined yield mode and the design methods based on member ductility requirements. Finally, the development direction of seismic performance-based design method for high-rise buildings is prospected.