• Title/Summary/Keyword: Seismic loading

Search Result 1,093, Processing Time 0.021 seconds

Experimental study on seismic performance of steel reinforced concrete T-shaped columns

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang;Leon, Roberto T.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.339-353
    • /
    • 2020
  • This study investigates the seismic performance of steel reinforced concrete (SRC) T-shaped columns under low cyclic loading tests. Based on test results of ten half-scale column specimens, failure patterns, hysteretic behavior, skeleton curves, ultimate strength, ductility, stiffness degradation and energy dissipation capacity were analyzed. The main variables included loading angles, axial compression ratios and steel ratios. The test results show that the average values of the ductility factor and the equivalent viscous damping coefficient with respect to the failure of the columns were 5.23 and 0.373, respectively, reflecting good seismic performance. The ductility decreased and the initial stiffness increased as the axial compression ratio of the columns increased. The strength increased with increasing steel ratio, as expected. The columns displaced along the web had higher strength and initial stiffness, while the columns displaced along the flange had better ductility and energy dissipation capacity. Based on the test and analysis results, a formula is proposed to calculate the effective stiffness of SRC T-shaped columns.

Study on a seismic slit shear wall with cyclic experiment and macro-model analysis

  • Jiang, Huanjun;Lu, Xilin;Kwan, A.K.H.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.371-390
    • /
    • 2003
  • The concept of the seismic slit shear wall was proposed in the early 1990's. A series of experimental and theoretic studies on the wall with reinforced concrete short connecting beams cast in the slit were carried out. In this paper another type of slit shear wall is studied. It is one with vertical slit purposely cast within the wall, and the rubber belt penetrated by a part of web shear reinforcement as seismic energy-dissipation device is filled in the slit. Firstly, an experiment under cyclic loading was carried out on two shear wall models, one slit and the other solid. The failure mechanism and energy-dissipation capacity are compared between the two different models, which testifies the seismic performance of the slit wall improved significantly. Secondly, for engineering practice purpose, a macroscopic analytical model is developed to predict the nonlinear behavior of the slit shear wall under cyclic loading. The mechanical properties of each constituent elements of this model are based on the actual behavior of the materials. Furthermore, the effects of both the axial force and bending moment on the shear behavior are taken into account with the aid of the modified compression-field theory. The numerical results are verified to be in close agreement with the experimental measurements.

Seismic behaviour of repaired superelastic shape memory alloy reinforced concrete beam-column joint

  • Nehdi, Moncef;Alam, M. Shahria;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.329-348
    • /
    • 2011
  • Large-scale earthquakes pose serious threats to infrastructure causing substantial damage and large residual deformations. Superelastic (SE) Shape-Memory-Alloys (SMAs) are unique alloys with the ability to undergo large deformations, but can recover its original shape upon stress removal. The purpose of this research is to exploit this characteristic of SMAs such that concrete Beam-Column Joints (BCJs) reinforced with SMA bars at the plastic hinge region experience reduced residual deformation at the end of earthquakes. Another objective is to evaluate the seismic performance of SMA Reinforced Concrete BCJs repaired with flowable Structural-Repair-Concrete (SRC). A $\frac{3}{4}$-scale BCJ reinforced with SMA rebars in the plastic-hinge zone was tested under reversed cyclic loading, and subsequently repaired and retested. The joint was selected from an RC building located in the seismic region of western Canada. It was designed and detailed according to the NBCC 2005 and CSA A23.3-04 recommendations. The behaviour under reversed cyclic loading of the original and repaired joints, their load-storey drift, and energy dissipation ability were compared. The results demonstrate that SMA-RC BCJs are able to recover nearly all of their post-yield deformation, requiring a minimum amount of repair, even after a large earthquake, proving to be smart structural elements. It was also shown that the use of SRC to repair damaged BCJs can restore its full capacity.

Effect of loading velocity on the seismic behavior of RC joints

  • Wang, Licheng;Fan, Guoxi;Song, Yupu
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.665-679
    • /
    • 2015
  • The strain rate of reinforced concrete (RC) structures stimulated by earthquake action has been generally recognized as in the range from $10^{-4}/s$ to $10^{-1}/s$. Because both concrete and steel reinforcement are rate-sensitive materials, the RC beam-column joints are bound to behave differently under different strain rates. This paper describes an investigation of seismic behavior of RC beam-column joints which are subjected to large cyclic displacements on the beam ends with three loading velocities, i.e., 0.4 mm/s, 4 mm/s and 40 mm/s respectively. The levels of strain rate on the joint core region are correspondingly estimated to be $10^{-5}/s$, $10^{-4}/s$, and $10^{-2}/s$. It is aimed to better understand the effect of strain rates on seismic behavior of beam-column joints, such as the carrying capacity and failure modes as well as the energy dissipation. From the experiments, it is observed that with the increase of loading velocity or strain rate, damage in the joint core region decreases but damage in the plastic hinge regions of adjacent beams increases. The energy absorbed in the hysteresis loops under higher loading velocity is larger than that under quasi-static loading. It is also found that the yielding load of the joint is almost independent of the loading velocity, and there is a marginal increase of the ultimate carrying capacity when the loading velocity is increased for the ranges studied in this work. However, under higher loading velocity the residual carrying capacity after peak load drops more rapidly. Additionally, the axial compression ratio has little effect on the shear carrying capacity of the beam-column joints, but with the increase of loading velocity, the crack width of concrete in the joint zone becomes narrower. The shear carrying capacity of the joint at higher loading velocity is higher than that calculated with the quasi-static method proposed by the design code. When the dynamic strengths of materials, i.e., concrete and reinforcement, are directly substituted into the design model of current code, it tends to be insufficiently safe.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Nonlinear Impact Analysis of CEDM Seismic Cap Plates for Seismic Loading (지진하중에 의한 제어봉구동장치 내진지지판의 비선형 충격해석)

  • Kang, Tae-Kyo;Kim, Tae-Hyung;Lee, Dae-Hee;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.435-440
    • /
    • 2004
  • The nonlinear impacts between the Control Element Drive Mechanisms (CEDMs) seismic cap plates installed on the CEDM top of a pressurized water reactor are studied with the dynamically reduced models of the CEDM and Integrated Head Assembly (IHA). It is important to develope nonlinear models considering the gap effects between the plates. In order to simulate impacts, reduced models for the primary structures, such as CEDM and IHA, are developed through simplifying detailed models, and the nonlinear structural analysis is performed under seismic loading conditions. The responses are examined in various gap sizes depending on the reactor operating conditions.

  • PDF

Study on seismic behavior of fabricated beam-column bolted joint

  • Zhang, Yu;Ding, Kewei
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.801-812
    • /
    • 2022
  • To better promote the development of fabricated buildings, this paper studies the seismic behavior of precast concrete beam-column bolted joint under vertical low cyclic loading. The experimental results show that cracks appear in the beam-column joint core area. Meanwhile, the concrete and the grade 5.6 bolts are damaged and deformed, respectively. Specifically, the overall structure of the beam-column joint remains intact, and the bolts have good energy dissipation capacity. Based on the experimental study, a new method of beam-column bolted connection is proposed in simulation analysis. The simulation results show that the bolts deform in the core area of the new beam-column joint, which enhances the concrete shear capacity legitimately and protects the T-end of the beam against shear failure. To summarize, both the experimental joint and the simulated joint prolong the service life by replacing the bolts under the seismic loading. The research results provide a reference for applications of the fabricated beam-column joint.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

An Experimental Study on the Fracture Behavior of Nuclear Piping System with a Circumferential Crack(I) - Estimation of Crack Behavior in Straight Piping - (원주방향균열이 존재하는 원전 배관계통의 파괴거동에 관한 실험적 연구(I) - 직관부에서의 균열거동 평가 -)

  • Choi, Young-Hwan;Park, Youn-Won;Wilkowski, Gery
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1182-1195
    • /
    • 1999
  • The purpose of this study is to investigate experimentally the effects of both seismic loading and crack length on the fracture behavior of piping system with a circumferential crack in nuclear power plants. The experiments were performed using both large scale piping system facility and 4 points bending test machine under PWR operating conditions. The difference in the load carrying capacities between cracked piping and non-cracked piping was also investigated using the results from experiments and numerical calculations. The results obtained from the experiments and estimation are as follows : (1) The safety margin under seismic loading is larger than those under quasi static loading or simple cyclic loading. (2) There was no significant effect of crack length on tincture behavior of piping system with both a surface crack and a through-wall crack. (3) The load carrying capacity in cracked piping was reduced by factors of 7 to 46 compared to non-cracked piping.

Influence of axial load and loading path on the performance of R.C. bridge piers

  • Kehila, Fouad;Bechtoula, Hakim;Benaouar, Djillali
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.563-588
    • /
    • 2015
  • Piers are the most vulnerable part of a bridge structure during an earthquake event. During Kobe earthquake in 1995, several bridge piers of the Hanshin Expressway collapsed for more than 600m of the bridge length. In this paper, the most important results of an experimental and analytical investigation of ten reinforced concrete bridge piers specimens with the same cross section subjected to constant axial (or variable) load and reversed (or one direction) cycling loading are presented. The objective was to investigate the main parameters influencing the seismic performance of reinforced concrete bridge piers. It was found that loading history and axial load intensity had a great influence on the performance of piers, especially concerning strength and stiffness degradation as well as the energy dissipation. Controlling these parameters is one of the keys for an ideal seismic performance for a given structure during an eventual seismic event. Numerical models for the tested specimens were developed and analyzed using SeismoStruct software. The analytical results show reasonable agreement with the experimental ones. The analysis not only correctly predicted the stiffness, load, and deformation at the peak, but also captured the post-peak softening as well. The analytical results showed that, in all cases, the ratio, experimental peak strength to the analytical one, was greater than 0.95.