• Title/Summary/Keyword: Seismic isolation bearing

Search Result 186, Processing Time 0.024 seconds

Analysis of fiber-reinforced elastomeric isolators under pure "warping"

  • Pinarbasi, Seval;Mengi, Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.31-47
    • /
    • 2017
  • As a relatively new type of multi-layered rubber-based seismic isolators, fiber-reinforced elastomeric isolators (FREIs) are composed of several thin rubber layers reinforced with flexible fiber sheets. Limited analytical studies in literature have pointed out that "warping" (distortion) of reinforcing sheets has significant influence on buckling behavior of FREIs. However, none of these studies, to the best knowledge of authors, has investigated their warping behavior, thoroughly. This study aims to investigate, in detail, the warping behavior of strip-shaped FREIs by deriving advanced analytical solutions without utilizing the commonly used "pressure", incompressibility, inextensibility and the "linear axial displacement variation through the thickness" assumptions. Studies show that the warping behavior of FREIs mainly depends on the (i) aspect ratio (shape factor) of the interior elastomer layers, (ii) Poisson's ratio of the elastomer and (iii) extensibility of the fiber sheets. The basic assumptions of the "pressure" method as well as the commonly used incompressibility assumption are valid only for isolators with relatively large shape factors, strictly incompressible elastomeric material and nearly inextensible fiber reinforcement.

An Experimental Study and the Design of the Rubber Laminated Lead Damper (탄성체 적층 납삽입 제진장치의 설계 및 특성시험)

  • Lee, Wan-Ha;Park, Jin-Young;Park, Jung-Woo;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.165-170
    • /
    • 2011
  • A large number of seismic isolation systems have been developed since the early 1970s. They are basically a combination of elastomeric bearing and energy dissipators. The investigation described in this paper analyzes shear property and the frequency dependence of Lead Rubber Damper(LRD). Lead Rubber Damper is similar in shape and performance property to Lead Rubber Bearing. Experimental condition ranges from 20 to 200% in share strain and from 0.1 to 1.0Hz in frequency. When the shear strain is increased, effective stiffness and damping ratio are decreased. When the frequency is increased, change of the behavior characteristic is subtle.

  • PDF

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

Study on the Performance Verification of PRB Isolation Device using Simulation and Experiment (PRB 지진격리장치의 성능 검증을 위한 해석 및 실험적 연구)

  • Kim, Sung-Jo;Kim, Se-Yun;Ji, Yongsoo;Kim, Bongsik;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.311-318
    • /
    • 2020
  • This study introduces a technique for improving the elastomeric-isolator performance using modular devices. The modular devices are shear resistance block, polymer spring, displacement acceptance guide, and anti-falling block. They are installed on the elastomeric isolator as a supplementary device. Each modularized device improves the isolator performance by performing step-by-step actions according to the seismic intensity and displacement. The PRB isolation device works in four stages, depending on the seismic magnitude, to satisfy the target performance. It is designed to accommodate design displacement in the first stage and large magnitude of earthquakes in the second and third stages. This design prevents superstructures from falling in the fourth stage due to large-magnitude earthquakes by increasing the capacity limit of the elastomeric isolator. In this study, the PRB isolation device is analyzed using finite element analysis to verify that the PRB isolation device works as intended and it can withstand loads corresponding to large-magnitude earthquakes. The performance of the PRB isolation device is validated by the analysis, which is further corroborated by actual experiments.

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.

Evaluation of a DDB design method for bridges isolated with triple pendulum bearings

  • Amiri, Gholamreza Ghodrati;Shalmaee, Mahdi Mohammadian;Namiranian, Pejman
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.803-820
    • /
    • 2016
  • In this study a direct displacement-based design (DDBD) procedure for a continuous deck bridge isolated with triple friction pendulum bearings (TFPB) has been proposed and the seismic demands of the bridge such as isolator's displacement and drift of piers obtained from this procedure evaluated under two-directional near-field ground motions. The structural model used here are continuous, three-span, castin-place concrete box girder bridge with a 30-degree skew which are isolated with 9 different TFPBs. By comparing the results of DDBD method with those of nonlinear time history analysis (NTHA), it can be concluded that the proposed procedure is able to predict seismic demands of similar isolated bridges with acceptable accuracy. Results of NTHA shows that dispersion of peak resultant responses for a group of ground motions increases by increasing their average value of responses. It needs to be noted that the demands parameters calculated by the DDBD procedure are almost overestimated for stiffer soil condition, but there is some underestimation in results of this method for softer soil condition.

Damping and Isolation Performance of Steel Structure (철골 구조물의 제진 및 면진성능)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan;Hwang, Sun-Kyoung;Lee, Giu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.221-230
    • /
    • 2004
  • In this paper, the dynamic response of a multi-story steel moment resisting frame equipped with viscoelastic dampers or lead rubber bearing type isolators subjected to seismic loads is investigated analytically. The objective of this study is to find the best location of viscoelastic dampers by the maximum stress method and maximum story drifts method from structure analysis. Also, a secondary objective of the study is to compare the member force, combined stress, and natural period of the structure retrofitted with viscoelastic dampers or lead rubber bearing type isolators to find effective vibration control method.

A Study on the Application of Friction Pendulum System in Main Control Room of Nuclear Power Plant (마찰진자를 이용한 면진장치의 원전 주 제어실 적용에 관한 연구)

  • Kim, Woo Bum;Lee, Kyung Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.407-417
    • /
    • 2005
  • An experimental and analytical study was performed to apply the friction pendulum system (FPS) to the main control room of a nuclear power plant. A friction pendulum bearing was fabricated, and the dynamic response of the bearing was evaluated. A partial model of a main control room attached to the FPS was tested on the shake table. The model consisted of a cabinet, a $3m\times3m$ access floor, and four friction pendulum bearings. The artificial time history based on the floor response spectrum of the main control room was used as the earthquake input signal in the test. Comparisons between the analytical study and the experimental study were conducted to verify the results and to extend the experimental study to the range of parameters that could not be experimentally studied.

LRB-based hybrid base isolation systems for cable-stayed bridges (사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, Billie-F.Jr.;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.63-76
    • /
    • 2004
  • This paper presents LRB-based hybrid base isolation systems employing additional active/semiactive control devices for mitigating earthquake-induced vibration of a cable-stayed 29 bridge. Hybrid base isolation systems could improve the control performance compared with the passive type-base isolation system such as LRB-installed bridge system due to multiple control devices are operating. In this paper, the additional response reduction by the two typical additional control devices, such as active type hydraulic actuators controlled by LQG algorithm and semiactive-type magnetorheological dampers controlled by clipped-optimal algorithm, have been evaluated bypreliminarily investigating the slightly modified version of the ASCE phase I benchmark cable-stayed bridge problem (i.e., the installation of LRBs to the nominal cable-stayed bridge model of the problem). It shows from the numerical simulation results that all the LRB based hybrid seismic isolation systems considered are quite effective to mitigate the structural responses. In addition, the numerical results demonstrate that the LRB based hybrid seismic isolation systems employing MR dampers have the robustness to some degree of the stiffness uncertainty of in the structure, whereas the hybrid system employing hydraulic actuators does not. Therefore, the feasibility of the hybrid base isolation systems employing semiactive additional control devices could be more appropriate in realfor full-scale civil infrastructure applications is clearly verified due to their efficacy and robustness.

Seismic responses of base-isolated nuclear power plant structures considering spatially varying ground motions

  • Sayed, Mohamed A.;Go, Sunghyuk;Cho, Sung Gook;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.169-188
    • /
    • 2015
  • This study presents the effects of the spatial variation of ground motions in a hard rock site on the seismic responses of a base-isolated nuclear power plant (BI-NPP). Three structural models were studied for the BI-NPP supported by different number of lead rubber bearing (LRB) base isolators with different base mat dimensions. The seismic responses of the BI-NPP were analyzed and investigated under the uniform and spatial varying excitation of El Centro ground motion. In addition, the rotational degrees of freedom (DOFs) of the base mat nodes were taken to consider the flexural behavior of the base mat on the seismic responses under both uniform and spatial varying excitation. Finally, the seismic response results for all the analysis cases of the BI-NPP were investigated in terms of the vibration periods and mode shapes, lateral displacements, and base shear forces. The analysis results indicate that: (1) considering the flexural behavior of the base mat has a negligible effect on the lateral displacements of base isolators regardless of the number of the isolators or the type of excitation used; (2) considering the spatial variation of ground motions has a substantial influence on the lateral displacements of base isolators and the NPP stick model; (3) the ground motion spatial variation effect is more prominent on lateral displacements than base shear forces, particularly with increasing numbers of base isolators and neglecting flexural behavior of the base mat.