• Title/Summary/Keyword: Seismic designed

Search Result 1,028, Processing Time 0.023 seconds

Effect of Analysis Procedures on Seismic Collapse Risk of Steel Special Moment Frames (내진설계에서 사용한 해석방법이 철골 특수모멘트골조의 붕괴위험도에 미치는 영향 평가)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.243-251
    • /
    • 2020
  • In seismic design standards such as KDS 41 17 00 and ASCE 7, three procedures are provided to estimate seismic demands: equivalent lateral force (ELF), response spectrum analysis (RSA), and response history analysis (RHA). In this study, two steel special moment frames (SMFs) were designed with ELF and RSA, which have been commonly used in engineering practice. The collapse probabilities of the SMFs were evaluated according to FEMA P695 methodology. It was observed that collapse probabilities varied significantly in accordance with analysis procedures. SMFs designed with RSA (RSA-SMFs) had a higher probability of collapse than SMFs designed with ELF (ELF-SMFs). Furthermore, RSA-SMFs did not satisfy the target collapse probability specified in ASCE 7-16 whereas ELF-SMFs met the target probability.

Seismic behavior of non-seismically designed reinforced concrete frame structure

  • Nguyen, Xuan-Huy;Nguyen, Huy Cuong
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.281-295
    • /
    • 2016
  • This paper presents a study on a non-seismically designed reinforced concrete (RC) frame structure. The structure was a existing three-story office building constructed according to the 1990s practice in Vietnam. The 1/3 scaled down versions of structure was tested on a shake table to investigate the seismic performance of this type of construction. It was found that the inter-story drift and the overall behavior of structure meet the requirements of the actual seismic design codes. Then, nonlinear time history analyses are carried out using the fiber beam- column elements. The comparison between the experimental and simulation results shows the performance of the time history analysis models.

Earthquake Response Analysis of Ordinary Moment Resisting Steel Frames (일반 모멘트 저항 철골조의 지진 응답 해석)

  • Yoon, Myung-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.4 no.1
    • /
    • pp.36-45
    • /
    • 2004
  • Allowable stress design method have been most widely used in steel structure in Korea. Recently, not only high-rise buildings but also medium or low-rise buildings were designed as steel structure. Most of low-rise steel buildings are designed as ordinary moment resisting frames(MRF). But MRFs don't have any lateral force resisting devices such as bracing in braced frames. This study focuses mainly on nonlinear seismic response analyses of small scale steel frames which will be used later as specimens for the evaluation of MRF's seismic performances. The main parameters of analyses are arrangement of column axis, $P-{\Delta}$ effect, acceleration factor etc. The object of this paper is to estimate the seismic performances of MRFs, which are mostly designed in Korea, through the results of response analyses.

  • PDF

Experimental study on seismic performance of coupling beams not designed for ductility

  • Lam, S.S.E.;Wu, B.;Liu, Z.Q.;Wong, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.317-334
    • /
    • 2008
  • Seismic performance of coupling beams not designed for ductility is examined. Eight 1:4 scale coupling beam specimens, with seven reinforced concrete sections and one composite section, were tested under cycles of push-pull action. Characteristics of the specimens include moderate shear span ratio in the range of 2.5-3.5, high main reinforcement ratio at 3-4% and small to large stirrup spacing with 90- degree hooks. All the reinforced concrete specimens failed in a brittle manner. Displacement ductility of specimens with large stirrup spacing (${\geq}$140 mm) is in the range of 3 to 5. Seismic performance of the specimens is also examined using the ultimate drift angle and the amount of energy dissipated. Correlating the test data, an empirical relationship is proposed to estimate the ultimate drift angle of a class of coupling beams considered in the study not designed for ductility.

Effects of uncertainties on seismic behaviour of optimum designed braced steel frames

  • Hajirasouliha, Iman;Pilakoutas, Kypros;Mohammadi, Reza K.
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.317-335
    • /
    • 2016
  • Concentrically braced steel frames (CBFs) can be optimised during the seismic design process by using lateral loading distributions derived from the concept of uniform damage distribution. However, it is not known how such structures are affected by uncertainties. This study aims to quantify and manage the effects of structural and ground-motion uncertainty on the seismic performance of optimum and conventionally designed CBFs. Extensive nonlinear dynamic analyses are performed on 5, 10 and 15-storey frames to investigate the effects of storey shear-strength and damping ratio uncertainties by using the Monte Carlo simulation method. For typical uncertainties in conventional steel frames, optimum design frames always exhibit considerably less inter-storey drift and cumulative damage compared to frames designed based on IBC-2012. However, it is noted that optimum structures are in general more sensitive to the random variation of storey shear-strength. It is shown that up to 50% variation in damping ratio does not affect the seismic performance of the optimum design frames compared to their code-based counterparts. Finally, the results indicate that the ground-motion uncertainty can be efficiently managed by optimizing CBFs based on the average of a set of synthetic earthquakes representing a design spectrum. Compared to code-based design structures, CBFs designed with the proposed average patterns exhibit up to 54% less maximum inter-storey drift and 73% less cumulative damage under design earthquakes. It is concluded that the optimisation procedure presented is reliable and should improve the seismic performance of CBFs.

Seismic-performance Flexural Experiments for Real Scale Piers with Circular Cross-section Considering Aging Effects (노후도를 고려한 실크기 원형단면 교각의 내진성능 휨실험)

  • Lee, Seung-Geon;Lee, Soo-Hyung;Lee, Hyerin;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.131-142
    • /
    • 2021
  • For old piers constructed when seismic design code had not been developed, lap splices usually exist in plastic hinge region. Corrosion of rebars causes decreasement in cross-sectional area of rebar and deterioration of lap-splice behaviour, thereby reducing the seismic performance of the old piers. In this research, according to these characteristics of old piers, test specimens are designed and manufactured considering rebar corrosion, lap splice, seismic design details, and seismic reinforcement. These effects are investigated through experiments. As a result of these experiment, rebar corrosion as well as lap splice reduces displacement ductility. When seismic design details or steel-plate reinforcement are applied, sufficient displacement ductility is expressed. For non-seismically designed specimens, loosening of the lap splice of transverse rebars caused buckling of longitudinal rebars and crushing of core concrete in plastic hinge region . For seismically designed specimen, area-reducing and untying of transverse rebars due to corrosion of rebars caused buckling of longitudinal rebars and crushing of core concrete.

Estimation of Seismic Capacity of RC Frames Designed to Gravity Loads in Korea (국내 비내진 설계된 RC 골조의 내진 저항성능)

  • 이영욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1155-1160
    • /
    • 2001
  • The seismic design regulations have not been applied to low-rised buildings which are less than 6 stories. To evaluate the seismic strength of the low-rised building which is designed only for gravity, a theoretical and numerical analysis are peformed. In theoretical analysis, column hinge sway mechanism is assumed. For the numerical, push-over analysis is executed for 3 and 4 storied buildings. From the evaluations, the minimum base shear is found to be 0.1 g

  • PDF

Numerical Study on Earthquake Performance of Gravity Dam Considering Earthquake Frequencies (지진진동수에 따른 콘크리트 중력댐의 내진성능에 대한 해석적 사례연구)

  • Chai, Young-Suk;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.64-74
    • /
    • 2016
  • Recently, the seismic stability evaluation of concrete gravity dams is raised due to the failure of dams occurred by the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. Dams failure may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about "earthquake - resistance" or "seismic safety" of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic stability of concrete gravity dams on the basis of the evaluation method of seismic stability of concrete gravity dams in U.S.A., Japan, Canada, and etc. Level 1 is a preliminary evaluation which is for purpose of screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. And level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dams on operation showed good seismic performance under designed artificial earthquake(KHC earthquake).

Performance Evaluation of Steel Moment Resisting Frames with Seismic Retrofit Using Fragility Contour Method (내진 보강된 철골모멘트골조의 취약성 등고선을 통한 성능평가)

  • Kim, Su Dong;Lee, Kihak;Jeong, Seong-Hoon;Kim, Do Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • Due to a high level of system ductility, steel moment resisting frames have been widely used for lateral force resisting structural systems in high seismic zones. Earthquake field investigations after Northridge earthquake in 1994 and Kobe earthquake in 1995 have reported that many steel moment resisting frames designed before 1990's had suffered significant damages and structural collapse. In this research, seismic performance assessment of steel moment resisting frames designed in accordance with the previous seismic provisions before 1990's was performed. Buckling-restrained braces and shear walls are considered for seismic retrofit of the reference buildings. Increasing stiffness and strength of the buildings using buckling-restrained braces and shear walls are considered as options to rehabilitate the damaged buildings. Probabilistic seismic performance assessment using fragility analysis results is used for the criteria for determining an appropriate seismic retrofit strategy. The fragility contour method can be used to provide an intial guideline to structural engineers when various structural retrofit options for the damaged buildings are available.

Performance-based plastic design for seismic rehabilitation of high rise frames with eccentric bracing and vertical link

  • Karimi, Rouhina;Rahimi, Sepideh
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.623-633
    • /
    • 2019
  • A large number of available concrete buildings designed only considering gravity load that require seismic rehabilitation because of failure to meet plasticity criteria. Using steel bracings are a common type of seismic rehabilitation. The eccentric bracings with vertical link reduce non-elastic deformation imposed on concrete members as well as elimination of probable buckling problems of bracings. In this study, three concrete frames of 10, 15, and 20 stories designed only for gravity load have been considered for seismic improvement using performance-based plastic design. Afterwards, nonlinear time series analysis was employed to evaluate seismic behavior of the models in two modes including before and after rehabilitation. The results revealed that shear link can yield desirable performance with the least time, cost and number of bracings of concrete frames. Also, it was found that the seismic rehabilitation can reduce maximum relative displacement in the middle stories about 40 to 80 percent. Generally, findings of this study demonstrated that the eccentric bracing with vertical link can be employed as a suitable proxy to achieve better seismic performance for existing high rise concrete frames.