• Title/Summary/Keyword: Seismic design Seismic damage

Search Result 488, Processing Time 0.027 seconds

Seismic performance and damage evaluation of concrete-encased CFST composite columns subjected to different loading systems

  • Xiaojun Ke;Haibin Wei;Linjie Yang;Jin An
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.121-134
    • /
    • 2023
  • This paper tested 11 concrete-encased concrete-filled steel tube (CFST) composite columns and one reinforced concrete column under combined axial compression and lateral loads. The primary parameters, including the loading system, axial compression ratio, volume stirrup ratio, diameter-to-thickness ratio of the steel tube, and stirrup form, were varied. The influence of the parameters on the failure mode, strength, ductility, energy dissipation, strength degradation, and damage evolution of the composite columns were revealed. Moreover, a two-parameter nonlinear seismic damage model for composite columns was established, which can reflect the degree and development process of the seismic damage. In addition, the relationships among the inter-story drift ratio, damage index and seismic performance level of composite columns were established to provide a theoretical basis for seismic performance design and damage assessments.

The inspection and seismic design method of electrical facility instated in the building (건축물에 시설되는 수변전설비 내진설계 및 검사 방법에 관한 연구)

  • Kim, Gi-Hyun;Lee, Sang-Ick;Kang, Min-Hee;Bae, Suk-Myong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.332-335
    • /
    • 2009
  • Incase of not considered seismic design at transformer vault which is made of many informant electrical facility, facility is damaged, electrical fire breaks out and second damage is able to break out at generating earthquake. But seismic design yet is not applied to at transformer vault in the country. Regard to seismic design method of electrical facility installed in the building internal, we present the seismic design of electrical facility using "Building construction design standard" in internal and "Manual of seismic design and construction for Building Electrical facility" in japan. This paper will be used detail seismic design of pipe and facility. reliability inspection plan for seismic design and construction of electrical facility

  • PDF

Seismic damage evaluation of steel reinforced recycled concrete filled circular steel tube composite columns

  • Hui, Ma;Xiyang, Liu;Yunchong, Chen;Yanli, Zhao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.445-462
    • /
    • 2022
  • To investigate and evaluate the seismic damage behaviors of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns, in this study, the cyclic loading tests of 11 composite columns was carried out by using the load-displacement joint control method. The seismic damage process, hysteretic curves and performance indexes of composite columns were observed and obtained. The effects of replacement rates of recycled coarse aggregate (RCA), diameter thickness ratio, axial compression ratio, profile steel ratio and section form of profile steel on the seismic damage behaviors of composite columns were also analyzed in detail. The results show that the failure model of columns is a typical bending failure under the combined action of horizontal loads and vertical loads, and the columns have good energy dissipation capacity and ductility. In addition, the replacement rates of RCA have a certain adverse effect on the seismic bearing capacity, energy consumption and ductility of columns. The seismic damage characteristics of composite columns are revealed according to the failure modes and hysteretic curves. A modified Park-Ang seismic damage model based on the maximum displacement and cumulative energy consumption was proposed, which can consider the adverse effect of RAC on the seismic damage of columns. On this basis, the performance levels of composite columns are divided into five categories, The interlayer displacement angle and damage index are used as the damage quantitative indicators of composite columns, and the displacement angle limits of composite columns at different performance levels under 80% assurance rate are calculated as 1/105, 1/85, 1/65, 1/28, and 1/25 respectively. On this basis, the damage index limits corresponding to each performance level are calculated as 0.045, 0.1, 0.48, 0.8, and 1.0 respectively. Finally, the corresponding relations among the performance levels, damage degrees, interlayer displacement angles and damage indexes of composite columns are established. The conclusions can provide reference for the seismic design of SRRC filled circular steel tube composite columns, it fills the vacancy in the research on seismic damage of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns.

The comparison of sectional damages in reinforced-concrete structures and seismic parameters on regional Basis; a case study from western Türkiye (Aegean Region)

  • Ercan Isik;Hakan Ulutas;Aydin Buyuksarac
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.37-51
    • /
    • 2023
  • Türkiye has made significant changes and updates in both seismic risk maps and design codes over time, as have other countries with high seismic risk. In this study, the last two seismic design codes and risk maps were compared for the Aegean Region (Western Türkiye) where the earthquake risk has once again emerged with the 2020 Izmir Earthquake (Mw=6.9). In this study, information about the seismicity of the Aegean Region was given. The seismic parameters for all provinces in the region were compared with the last two earthquake risk maps. The spectral acceleration coefficients of all provinces have increased and differentiated with the current seismic hazard map as a result of the design spectra used on a regional basis have been replaced by the geographical location-specific design spectra. In addition, section damage limits were obtained for all provinces within the scope of the last two seismic design codes. Structural analyses for a sample reinforced-concrete building were made separately for each province using pushover analysis. The deformations in the cross-sections were compared with the limit states corresponding to the damage levels specified in the last two seismic design codes for the region. Target displacement requests for all provinces have decreased with the current code. The differentiation of geographical location-specific design spectra both in the last two seismic design code and between provinces has caused changes in section damages and building performance levels. The main aim of this study is to obtain and compare both seismic and structural analysis results for all provinces in the Aegean Region (Western Türkiye).

Seismic fragility curves using pulse-like and spectrally equivalent ground-motion records

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.79-90
    • /
    • 2020
  • 4- and 8-storey reinforced-concrete frame buildings are analyzed under the suites of the near-fault pulse-like, and the corresponding spectrally equivalent far-fault ground-motion records. Seismic fragility curves for the slight, moderate, extensive, and complete damage states are developed, and the damage probability matrices, and the mean loss ratios corresponding to the Design Basis Earthquake and the Maximum Considered Earthquake hazard levels are compared, for the investigated buildings and sets of ground-motion records. It is observed that the spectrally equivalent far-fault ground-motion records result in comparable estimates of the fragility curve parameters, as that of the near-fault pulse-like ground-motion records. As a result, the derived damage probability matrices and mean loss ratios using two suites of ground-motion records differ only marginally (of the order of ~10%) for the investigated levels of seismic hazard, thus, implying the potential for application of the spectrally equivalent ground-motion records, for seismic fragility and risk assessment at the near-fault sites.

Moment resisting steel frames under repeated earthquakes

  • Loulelis, D.;Hatzigeorgiou, G.D.;Beskos, D.E.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.231-248
    • /
    • 2012
  • In this study, a systematic investigation is carried out on the seismic behaviour of plane moment resisting steel frames (MRF) to repeated strong ground motions. Such a sequence of earthquakes results in a significant damage accumulation in a structure because any rehabilitation action between any two successive seismic motions cannot be practically materialised due to lack of time. In this work, thirty-six MRF which have been designed for seismic and vertical loads according to European codes are first subjected to five real seismic sequences which are recorded at the same station, in the same direction and in a short period of time, up to three days. Furthermore, the examined frames are also subjected to sixty artificial seismic sequences. This investigation shows that the sequences of ground motions have a significant effect on the response and, hence, on the design of MRF. Additionally, it is concluded that ductility demands, behaviour factor and seismic damage of the repeated ground motions can be satisfactorily estimated using appropriate combinations of the corresponding demands of single ground motions.

Seismic Fragility Assessment for Korean High-Rise Non-Seismic RC Shear Wall Apartment Buildings (국내 고층 비내진 철근콘크리트 벽식 아파트의 지진취약도 평가)

  • Jeon, Seong-Ha;Shin, Dong-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.293-303
    • /
    • 2020
  • Seismic fragility was assessed for non-seismic reinforced concrete shear walls in Korean high-rise apartment buildings in order to implement an earthquake damage prediction system. Seismic hazard was defined with an earthquake scenario, in which ground motion intensity was varied with respect to prescribed seismic center distances given an earthquake magnitude. Ground motion response spectra were computed using Korean ground motion attenuation equations to match accelerograms. Seismic fragility functions were developed using nonlinear static and dynamic analysis for comparison. Differences in seismic fragility between damage state criteria including inter-story drifts and the performance of individual structural members were investigated. The analyzed building had an exceptionally long period for the fundamental mode in the longitudinal direction and corresponding contribution of higher modes because of a prominently insufficient wall quantity in such direction. The results showed that nonlinear static analyses based on a single mode tend to underestimate structural damage. Moreover, detailed assessments of structural members are recommended for seismic fragility assessment of a relatively low performance level such as collapse prevention. On the other hand, inter-story drift is a more appropriate criterion for a relatively high performance level such as immediate occupancy.

Component deformation-based seismic design method for RC structure and engineering application

  • Han, Xiaolei;Huang, Difang;Ji, Jing;Lin, Jinyue
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.575-588
    • /
    • 2019
  • Seismic design method based on bearing capacity has been widely adopted in building codes around the world, however, damage and collapse state of structure under strong earthquake can not be reflected accurately. This paper aims to present a deformation-based seismic design method based on the research of RC component deformation index limit, which combines with the feature of Chinese building codes. In the proposed method, building performance is divided into five levels and components are classified into three types according to their importance. Five specific design approaches, namely, "Elastic Design", "Unyielding Design", "Limit Design", "Minimum Section Design" and "Deformation Assessment", are defined and used in different scenarios to prove whether the seismic performance objectives are attained. For the components which exhibit ductile failure, deformation of components under strong earthquake are obtained quantitatively in order to identify the damage state of the components. For the components which present brittle shear failure, their performance is guaranteed by bearing capacity. As a case study, seismic design of an extremely irregular twin-tower high rise building was carried out according to the proposed method. The results evidenced that the damage and anti-collapse ability of structure were estimated and controlled by both deformation and bearing capacity.

Study on seismic response of a seismic isolation liquid storage tank

  • Xiang Li;Jiangang Sun;Lei Xu;Shujin Zhang;Lifu Cui;Qinggao Zhang;Lijie Zhu
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.337-348
    • /
    • 2024
  • This paper presents a new seismic isolation design for liquid storage tank (LST). The seismic isolation system includes: LST, flexible membrane, sand mat and rolling seismic isolation devices. Based on the mechanical equilibrium theory, the symmetric concave rolling restoring force model of the isolation device is derived. Based on the elasticity theory and restoring force model of the seismic isolation, a simplified mechanical model of LST with the new seismic isolation is established. The rationality of the seismic isolation design of LST is explored. Meanwhile, the seismic response of the new seismic isolation LST is investigated by numerical simulation. The results show that the new seismic isolation tank can effectively reduce the seismic response, especially the control of base shear and overturning moment, which greatly reduces the risk of seismic damage. The seismic reduction rate of the new seismic isolation storage tanks in Class I, II, and III sites is better than that in Class IV sites. Moreover, the seismic isolation device can effectively control the ground vibration response of storage tanks with different liquid heights. The new seismic isolation LST design provides better isolation for slender LSTs than for broad LSTs.

Assessment of seismic fragility curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake

  • Mehani, Youcef;Bechtoula, Hakim;Kibboua, Abderrahmane;Naili, Mounir
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.791-808
    • /
    • 2013
  • The main purpose of this paper is to develop seismic fragility curves for existing reinforced concrete, RC, buildings based on the post earthquake field survey and the seismic performance using capacity design. Existing RC buildings constitute approximately 65% of the total stock in Algiers. This type of buildings, RC, was widely used in the past and chosen as the structural type for the future construction program of more than 2 millions apartments all over Algeria. These buildings, suffered moderate to extensive damage after the 2003 Boumerdes earthquake, on May 21st. The determination of analytical seismic fragility curves for low-rise and mid-rise existing RC buildings was carried out based on the consistent and complete post earthquake survey after that event. The information on the damaged existing RC buildings was investigated and evaluated by experts. Thirty four (34) communes (districts) of fifty seven (57), the most populated and affected by earthquake damage were considered in this study. Utilizing the field observed damage data and the Japanese Seismic Index Methodology, based on the capacity design method. Seismic fragility curves were developed for those buildings with a large number data in order to get a statistically significant sample size. According to the construction period and the code design, four types of existing RC buildings were considered. Buildings designed with pre-code (very poor structural behavior before 1955), Buildings designed with low code (poor structural behavior, between 1955-1981), buildings designed with medium code (moderate structural behavior, between 1981-1999) and buildings designed with high code (good structural behavior, after 1999).