• 제목/요약/키워드: Seismic condition

검색결과 432건 처리시간 0.033초

Lyapunov 함수의 목표 변화율을 이용한 가진된 건물의 슬라이딩 모드 제어 (Sliding Mode Control with Target Variation Rate of Lyapunov Function for Seismic-Excited Structures)

  • 이상현;정진욱;민경원;강경수
    • 한국지진공학회논문집
    • /
    • 제5권3호
    • /
    • pp.73-78
    • /
    • 2001
  • 본 논문은 Lyapunov 함수의 목표 변화율을 이용한 슬라이딩 모드 제어 기법을 제안한다. 슬라이딩 모드 제어는 구조물이 안정적인 거동을 하는 슬라이딩 표면을 정의하고 정의된 슬라이딩 표면에서 구조물이 거동하도록 만드는 제어기법으로 선형제어와 뱅뱅제어 등의 다망한 제어기 설계가 가능하다. 그러나, 기존 연구에서 선 형제어의 경우 Lyapunov 함수의 변화율이 음수라는 조건만 만족하도록 제어기 설계를 수행하여 제어기의 성능을 충분히 활용하지 못한다. 또한 제어기의 성능을 극대화하기 위해 사용하는 뱅뱅제어의 경우, 불필요하게 큰 제어력이 발생하는 문제점을 가지고 있다. 제안된 제어기법은 설계자에 의해 설정된 Lyapunov 함수의 목표 변화율을 달성함으로써 제어기의 성능을 효율적으로 활용할 수 있다. 수치해석결과, 제안된 제어기법은 기존의 선형제어보다 큰 최대응답감소의 효과를 가지며, 기존의 뱅뱅제어보다 적은 제어력을 가지고도 동등한 제어효과를 보인다.

  • PDF

한국서남해안지역(韓國西南海岸地域)에 분포(分布)하는 함유질물층(含油質物層)에 대(對)한 지질학적(地質學的) 및 지구화학적연구(地球化學的硏究) (Geologic and Geochemical study on the rock sequences containing oily materials in Southwestern Coast Area of Korea)

  • 이대성;이하영
    • 자원환경지질
    • /
    • 제9권1호
    • /
    • pp.45-73
    • /
    • 1976
  • This study has been made for the enlargement of a previous work of 1964 which was carried out by an author of this work emphasizing the stratigraphy, micropaleontology, depositional environment, and structural tectonics of the studied area. The stratigraphic sequences of the area are groupped into four units: (1) basement of Pre-Cretaceous, (2) lower sediments of Late Cretaceous, (3) upper sediments of Late Cretaceous and (4) igneous rocks of Late Cretaceous and Tertiary (?). The oldest rocks consisting of schists and gneisses of Pre-Cambrian and schistose granite' of Jurassic age are exposed at the base of this area on which the thick Cretaceous sediments were deposited. These old rocks are unconformably overlain by the lower sedimens of Late Cretaceous composed of three members, an alternation of black shale and tuffaceous sediments, fine tuff and rhyollite flow in ascending order. The oily material was found from the black shales of the alternation m"ember as semi-solid greaselike material, oily order and microscopic granular spherical material and oily stain. The lower sediments are also overlain, in low-angleunconfromity, by the 'upper sediments having three members, an alternation of volcanic conglomerate and andesitic tuff, rhyollitic tuff and andesite flow in the same order. The igneous suit of diabase, diorites, biotite granite, porphyritic granite and porphyries of the latest Cretaceous and small exposure of pitchstone of Tertiary (?) intruded into the pre-existed rocks above mentioned. Considerable amount of ostra- coda microfossils have been chemically extracted from the black shales of the lower sediments and the identification of the fossils suggests that the depositional environment of the sediments were under fresh or brackish water condition. The distribution of the geology and its tectonic data also suggest a combination of dome and basin structures in the area of San-i peninsula and Jin-do as shown in fig. 8. Between these two units an anticlinal structure was constructed. As a result of this study, a seismic survey in a district between U-su-yong and north coast of Jin-do is recommended to determine the underground features.

  • PDF

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.

Study of modified Westergaard formula based on dynamic model test on shaking table

  • Wang, Mingming;Yang, Yi;Xiao, Weirong
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.661-670
    • /
    • 2017
  • The dynamic model test of dam-reservoir coupling system for a 203m high gravity dam is performed to investigate effects of reservoir water on dynamic responses of dam during earthquake. The hydrodynamic pressure under condition of full reservoir, natural frequencies and acceleration amplification factors along the dam height under conditions of full and empty reservoir are obtained from the test. The results indicate that the reservoir water have a stronger influence on the dynamic responses of dam. The measured natural frequency of the dam model under full reservoir is 21.7% lower than that of empty reservoir, and the acceleration amplification factor at dam crest under full reservoir is 18% larger than that under empty reservoir. Seismic dynamic analysis of the gravity dams with five different heights is performed with the Fluid-Structure Coupling Model (FSCM). The hydrodynamic pressures from Westergaard formula are overestimated in the lower part of the dam body and underestimated in its upper part to compare with those from the FSCM. The underestimation and overestimation are more significance with the increase of the dam height. The position of the maximum hydrodynamic pressure from the FSCM is raised with the increase of dam height. In view of the above, the Westergaard formula is modified with consideration in the influence of the height of dam, the elasticity of dam on the hydrodynamic pressure. The solutions of modified Westergaard formula are quite coincident with the hydrodynamic pressures in the model test and the previous report.

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

말뚝 기초 고유진동수의 가속도 크기 의존성을 고려한 상사법칙 개발 (Development of the similitude law considering the intensity-dependent variation of natural frequency of pile foundation system)

  • 최정인;유민택;김성렬;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.905-912
    • /
    • 2009
  • 1-g shaking table test is conducted to evaluate the dynamic behavior of a soil-structure system under seismic loading condition. A consistent similitude law between the model and prototype is needed to predict the behavior of the prototype structure, quantitatively. The natural frequency of geomaterial decreases with the increase of shaking intensity because of the non-linear property of the geomaterial. This phenomenon affects the applicability of similitude laws in 1-g shaking table tests. In this study, a simple method is suggested to determine the frequency of the input motions in 1-g tests in order to enhance the applicability of similitude laws. Modified input frequency is calculated using the frequency ratio with consideration of the variation of the natural frequency according to the intensity of input ground acceleration. To verify the applicability of the suggested method, a series of 1-g shaking table tests were performed for three different sizes of model piles having an overburden mass on their heads by varying the acceleration and the frequency of input motion. The acceleration amplification ratio on the overburden mass, the lateral displacement at the pile head and the maximum bending moment along the pile depth were measured. The projected behaviors of the virtual prototype based on the measured values of the model tests, where the input frequencies were calculated by the new method, showed good consistency, verifying the applicability of the suggested method.

  • PDF

천연가스 생산기지 내 UPS시스템의 해석모델 개발 (Development of an Analysis Model for UPS System of LNG Receiving Terminal Facilities)

  • 국승규;홍성경;김준호;최원목;박영호
    • 한국전산구조공학회논문집
    • /
    • 제29권6호
    • /
    • pp.539-545
    • /
    • 2016
  • 천연가스 생산기지 내의 UPS시스템은 지진 시에도 기능성을 유지해야 하는 주요 설비 중 하나이다. 이 연구에서는 IEEE Std 693-2005 기준을 토대로 대형 진동대를 이용한 UPS시스템의 동특성 탐색시험을 수행하고 기기의 고유진동수와 모드감쇠, 모드형상 등을 도출하였다. 또한, 3축 시간이력시험을 통해 지진 시 기기의 거동 및 부재의 발생응력을 확인하였다. 유한요소모델을 생성하여 고유치해석을 수행하고 이를 동특성 탐색시험의 시험값과 비교, 분석하여 해석모델을 개선하고 자중해석과 응답스펙트럼 해석을 수행하여 조합응력을 3축 시간이력시험의 시험값과 비교하였다. 개선된 유한요소 해석모델의 동특성과 조합응력이 시험 결과와 유사함을 입증하여 개선된 UPS시스템 해석모델의 적합성을 제시하였다.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

원심모형실험을 이용한 무리말뚝의 동적 p-y 곡선 산정 (Evaluation of Dynamic p-y Curves of Group Piles Using Centrifuge Model Tests)

  • ;;김성렬
    • 한국지반공학회논문집
    • /
    • 제34권5호
    • /
    • pp.53-63
    • /
    • 2018
  • 무리말뚝의 내진설계를 수행할 때 지반-말뚝 동적상호작용을 고려하는 것이 중요하다. 특히, 동적하중을 받는 무리말뚝의 횡방향 저항력은 무리말뚝 효과에 의하여 단일말뚝과 비교하여 감소한다. 그러나, 지금까지 지진하중을 받는 무리말뚝의 동적 무리말뚝 효과를 제안한 연구는 매우 부족한 실정이다. 그러므로, 본 연구에서는 건조 모래지반에 설치된 $3{\times}3$ 무리말뚝에 대한 동적 원심모형실험을 수행하여 무리말뚝 효과를 산정하였다. 이 무리말뚝 효과는 동적 p-y 곡선에서 극한 횡방향 지반반력과 지반반력계수에 대한 보정계수(multiplier)를 적용하여 고려하였다. 그리고, 본 연구에서 얻어진 동적 p-y 곡선을 Beam on Nonlinear Winkler Foundation 모델을 이용한 비선형 동해석에 적용하여 그 적용성을 검증하였다. 그 결과, 본 연구에서 제안한 무리말뚝의 보정계수가 원심모형실험 결과를 잘 모사할 수 있는 것으로 나타났다.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.