• Title/Summary/Keyword: Seismic behaviour

Search Result 280, Processing Time 0.021 seconds

Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints

  • Nogueiro, Pedro;da Silva, Luis Simoes;Bento, Rita;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.39-58
    • /
    • 2009
  • Composite joints, considering the composite action of steel and concrete, exhibit, in general, high strength and high ductility. As a consequence, the use of this type of joint has been increasing in many countries, especially in those that are located in earthquake-prone regions. In this paper, a hysteretic model with pinching is presented that is able to reproduce the cyclic response of steel and composite joints. Secondly, the computer implementation and adaptation of the model in a spring element within the computer code Seismosoft is described. The model is subsequently calibrated using a series of experimental test results for composite joints subjected to cyclic loading. Finally, typical parameters for the various joint configurations are proposed.

Dynamic behaviour of semi-rigid jointed cold-formed steel hollow frames

  • Joanna, P.S.;Samuel Knight, G.M.;Rajaraman, A.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.513-529
    • /
    • 2006
  • This paper deals with the dynamic behaviour of cold-formed steel hollow frames with different connection stiffnesses. An analytical model of a semi-rigid frame was developed to study the influence of connection stiffnesses on the fundamental frequency and dynamic response of the frames. The flexibilities of the connections are modeled by rotational springs. Neglect of semi-rigidity leads to an artificial stiffening of frames resulting in shorter fundamental period, which in turn results in a significant error in the evaluation of dynamic loads. In the seismic design of structures, of all the principal modes, the fundamental mode of translational vibration is the most critical. Hence, experiments were conducted to study the influence of the connection stiffnesses on the fundamental mode of translational vibration of the steel hollow frames. From the experimental study it was found that the fundamental frequency of the frames lie in the semi-rigid region. From the theoretical investigation it was found that the flexibly connected frames subjected to lateral loads exhibit larger deflection as compared to rigidly connected frames.

Effects of confinement reinforcement and concrete strength on nonlinear behaviour of RC buildings

  • Yon, Burak;Calayir, Yusuf
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.279-297
    • /
    • 2014
  • This paper investigates the effects of confinement reinforcement and concrete strength on nonlinear behaviour of reinforced concrete buildings (RC). For numerical application, an eleven-storey and four bays reinforced concrete frame building is selected. Nonlinear incremental static (pushover) analyses of the building are performed according to various concrete strengths and whether appropriate confinement reinforcement, which defined in Turkish seismic code, exists or not at structural elements. In nonlinear analysis, distributed plastic hinge model is used. As a result of analyses, capacity curves of the frame building and moment-rotation curves at lower end sections of ground floor columns are determined. These results are compared with each other according to concrete strength and whether appropriate confinement reinforcement exists or not, respectively. According to results, it is seen that confinement reinforcement is important factor for increasing of building capacity and decreasing of rotations at structural elements.

Behaviour of FRP composite columns: Review and analysis of the section forms

  • Rong, Chong;Shi, Qingxuan;Zhao, Hongchao
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.

hysteretic behaviour of exterior HSC column-steel beam joints (고강도 콘크리트 기둥-강재 보 외부 접합부의 이력거동)

  • 조순호;선성규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.23-34
    • /
    • 2000
  • 반복하중을 지지하는 4개의 2/3 크리 접합부 실험을 통하여 콘크리트 기둥 및 강재 보로 구성된 골조에 대한 외부 모멘트 접합부의 이력거동을 조사하였다. 주요 실험 변수는 접합부에 배치된 후프근의 수, 콘크리트만의 전단강도 발현응ㄹ 유도한 접합부 상세, 강재 보 플랜지 상, 하부에 스터드 형태의 전단키를 사용한 상세 등이다. 실험 시 관측된 균열양상, 파괴형상 및 다양한 계측결과에 근거하여 접합부 상세에 따른 각 시험체의 거동이 자세히 기술되었으며, 항복 후 보유강도, 강성저하 정도 및 에너지 소산능력 등이 분석되었다. 실험결과에 의하면, 이들 중 패널 및 인접 기둥 영역에 각각 2개의 후프근을 갖는 시험체 (CF3) 가 가장 우수한 이력응답을 나타냈으며, 이러한 형태의 접합부 상헤는 우리나와 같은 약진 지역에 적합할 것으로 판단되었다.

  • PDF

Monotonic and cyclic flexural tests on lightweight aggregate concrete beams

  • Badogiannis, E.G.;Kotsovos, M.D.
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.317-334
    • /
    • 2014
  • The work is concerned with an investigation of the advantages stemming from the use of lightweight aggregate concrete in earthquake-resistant reinforced concrete construction. As the aseismic clauses of current codes make no reference to lightweight aggregate concrete beams made of lightweight aggregate concrete but designed in accordance with the code specifications for normal weight aggregate concrete, together with beams made from the latter material, are tested under load mimicking seismic action. The results obtained show that beam behaviour is essentially independent of the design method adopted, with the use of lightweight aggregate concrete being found to slightly improve the post-peak structural behaviour. When considering the significant reduction in deadweight resulting from the use of lightweight aggregate concrete, the results demonstrate that the use of this material will lead to significant savings without compromising the structural performance requirements of current codes.

Dynamic Behaviour of Pile Foundation with Scour (세굴을 고려한 말뚝기초의 동적 거동분석)

  • 김정환;허택영;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.55-62
    • /
    • 2003
  • This study considered the effect of scour depth on the behaviour of pile foundation of bridge structure under seismic excitation. The numerical model was composed of the superstructure, pile foundation and soil. The superstructure and pile was modeled by beam elements and soil was by spring elements. The pile head and concrete footing was considered as hinge and rigid connected situation, respectively. A toro-gap element was used to model the expansion joint of superstructure. Nonlinear dynamic analysis was carried out on the constructed model. It was acknowledged that the steel pile become to yield after the scour depth reached about 2.0m.

  • PDF

Behaviour of lead-rubber bearings

  • Mori, Atsushi;Moss, P.J.;Carr, A.J.;Cooke, N.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 1998
  • Experimental work undertaken to investigate the behaviour of lead-rubber bearings under compression and a combination of compression and shear or rotation has been reported on elsewhere. However, it is difficult to determine the state of stress within the bearings in terms of the applied forces and the interaction between the lead plug and the steel shims and elastomeric layers. In order to supply some of the missing information about the stress-strain state within the bearings, an analytical study using the finite element method was carried out. The available experimental results were used to validate the model and although agreement was not as good as expected (on account of difficulties in modelling the lead plug), the analyses did provide some information about the state of the stress within the bearing.

Numerical simulation of masonry shear panels with distinct element approach

  • Zhuge, Y.;Hunt, S.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.477-493
    • /
    • 2003
  • Masonry is not a simple material, the influence of mortar joints as a plane of weakness is a significant feature and this makes the numerical modelling of masonry very difficult especially when dynamic (seismic) analysis is involved. In order to develop a simple numerical model for masonry under earthquake load, an analytical model based on Distinct Element Method (DEM) is being developed. At the first stage, the model is applied to simulate the in-plane shear behaviour of an unreinforced masonry wall with and without opening where the testing results are available for comparison. In DEM, a solid is represented as an assembly of discrete blocks. Joints are modelled as interface between distinct bodies. It is a dynamic process and specially designed to model the behaviour of discontinuities. The numerical solutions obtained from the distinct element analysis are validated by comparing the results with those obtained from existing experiments and finite element modelling.

Development of new inner diaphragms for a H-beam and composite box column joint

  • Khan, Mahbub;Uy, Brian;Kim, Jin W
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.363-373
    • /
    • 2022
  • This paper presents an experimental and a numerical investigation of a H-beam - composite box column joint fabricated with two new inner diaphragms and a continuous inner diaphragm. The main objective of the current research project is to investigate the structural performance of the newly developed inner diaphragms under a cyclic loading protocol. Hysteretic behaviour of the composite joints is analysed to investigate the structural performance of the new and continuous inner diaphragms. This paper compares the result of the finite element (FE) models with the new and continuous inner diaphragms against their counterpart experimental results. To produce a design criterion for the newly developed inner diaphragms, yielding or failure area of the inner diaphragms under tensile stress is analysed from the FE results.