• Title/Summary/Keyword: Seismic analysis of pile

Search Result 98, Processing Time 0.055 seconds

Seismic Analysis of Bridges Accounting for Soil-Pile-Structure Interaction (지반-말뚝-구조물 상호작용을 고려한 교량구조물의 지진해석)

  • Kim, Moon-Kyun;Lim, Yun-Mook;Cho, Kyung-Hwan;Kim, Ji-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.405-412
    • /
    • 2005
  • In this study, a numerical method for soil-pile-structure interaction problems in multi-layered half-plane is developed. The total soil-pile-structure interaction system is divided into two parts namely, nonlinear structure part and linear soil-pile interaction parts. In the structure field, the general finite element method is introduced to solve the dynamic equation of motion for the structure. In the soil-pile structure interaction part, physical model consisting of lumped parameter, which is frequency dependent coefficient and determined by rigorous analysis method is introduced. Using proposed analysis procedure, the nonlinear behavior of structure considering soil-structure interaction can be efficiently determined in time domain and the analysis cost is dramatically reduced.

  • PDF

Seismic Design of Sheet Pile Walls Used in Harbor Construction (항만공사에 이용되는 널말뚝의 내진설계)

  • Kim, Hong Taek;Bang, Yoon Kyung;Kang, In Gyu;Cho, Won Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.171-187
    • /
    • 1991
  • In the present study, an analytical solution method is proposed for the seismic design of cantilever sheet pile walls and anchored sheet pile walls used in harbor construction. Seepage pressures, together with a change in magnitudes of effective horizontal soil pressures, are included in the proposed solution method. Also, the Mononobe-Okabe analysis as well as the Westergaard and Matsuo-Ohara theory of hydrodynamic pressures is used in the proposed method. Further, the choice of values for safety factors is examined for the seismic design of anchored sheet pile walls, and the effects of various parameters(dredge line slope, differential in water levels, anchor position, and wall friction angle) on embedment depth, anchor force, and maximum bending moment are analyzed for anchored walls in dense sand deposits. In addition. the tables that could be used for preliminary seismic design of anchored walls in dense sands are presented. The proposed method deals with the sheet pile walls with free earth support.

  • PDF

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.

Proposed dynamic p-y curves on a single pile considering shear wave velocity of soil

  • Song, Sumin;Lim, Hyunsung;Park, Seongyong;Jeong, Sangseom
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.353-361
    • /
    • 2022
  • The dynamic behavior of a single pile was investigated by using analytical and numerical studies. The focus of this study was to develop the dynamic p-y curve of a pile for pseudo-static analysis considering the shear wave velocity of the soil by using three-dimensional numerical analyses. Numerical analyses were conducted for a single pile in dry sand under changing conditions such as the shear wave velocity of the soil and the acceleration amplitudes. The proposed dynamic p-y curve is a shape of hyperbolic function that was developed to take into account the influence of the shear wave velocity of soil. The applicability of pseudo-static analysis using the proposed dynamic p-y curve shows good agreement with the general trends observed by dynamic analysis. Therefore, the proposed dynamic p-y curve represents practical improvements for the seismic design of piles.

Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters

  • Duaa Al-Jeznawi;Jitendra Khatti;Musab Aied Qissab Al-Janabi;Kamaldeep Singh Grover;Ismacahyadi Bagus Mohamed Jais;Bushra S Albusoda;Norazlan Khalid
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.455-475
    • /
    • 2023
  • The present study investigates the non-linear soil-pile interaction using three-dimensional (3D) non-linear finite element models. The numerical models were validated by using the results of extensive pile load and shaking table tests. The pile performance in liquefiable and non-liquefiable soil has been studied by analyzing the liquefaction ratio, pile lateral displacement (LD), pile bending moment (BM), and frictional resistance (FR) results. The pile models have been developed for the different ground conditions. The study reveals that the results obtained during the pile load test and shaking cycles have good agreement with the predicted pile and soil response. The soil density, peak ground acceleration (PGA), slenderness ratio (L/D), and soil condition (i.e., dry and saturated) are considered during modeling. Four ground motions are used for the non-linear time history analyses. Consequently, design charts are proposed depended on the analysis results to be used for design practice. Eleven models have been used to validate the capability of these charts to capture the soil-pile response under different seismic intensities. The results of the present study demonstrate that L/D ratio slightly affects the lateral displacement when compared with other parameters. Also, it has been observed that the increasing in PGA and decreasing L/D decreases the excess pore water pressure ratio; i.e., increasing PGA from 0.1 g to 0.82 g of loose sand model, decrease the liquefaction ratio by about 50%, and increasing L/D from 15 to 75 of the similar models (under Kobe earthquake), increase this ratio by about 30%. This study reveals that the lateral displacement increases nonlinearly under both dry and saturated conditions as the PGA increases. Similarly, it is observed that the BM increases under both dry and saturated states as the L/D ratio increases. Regarding the acceleration histories, the pile BM was reduced by reducing the acceleration intensity. Hence, the pile BM decreased to about 31% when the applied ground motion switched from Kobe (PGA=0.82 g) to Ali Algharbi (PGA=0.10 g). This study reveals that the soil conditions affect the relationship pattern between the FR and the PGA. Also, this research could be helpful in understanding the threat of earthquakes in different ground characteristics.

Comparison of Modeling Methods of a Pile Foundation in Seismic Analysis of Bridge Piers (교각의 내진설계를 위한 말뚝기초의 모델링 기법 비교)

  • 김나엽;김성렬;전덕찬;김명모
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.25-32
    • /
    • 2002
  • In the seismic designing of bridges, the pile foundation of bridge piers generally have been modeled to have a fixed end for its convenience and conservative designing. The fixed-end assumption, however, produces very conservative results in terms of the pier forces. Therefore, many other design methods are evolved to consider the flexibility of the pile foundation. In this study, the response spectrum analysis was performed for a bridge pier having a pile foundation. The shear force, moment, and displacement, which occurred at the pier column under an earthquake loading, were compared to analyze the effects of the modeling method, soil condition and the input earthquake response spectrum. In most cases, the fixed-end model gives larger design forces than flexible foundation models. However, when a long period earthquake is applied to the bridge pier on a soft clay foundation, it is found that the flexible foundation models give larger design forces than the fixed-end model. In the end, the reliability of several flexible foundation models was verified by comparing their results with those of a numerical analysis that considers the soil-structure interaction phenomenon in a rigorous manner.

Nonlinear Seismic Analysis Method of Reinforced Concrete Buildings Including Their Pile Foundations (말뚝기초를 포함한 철근콘크리트 건물의 비선형 지진해석법에 관한 연구)

  • 이강석;이원호;류해상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.9-20
    • /
    • 2003
  • At present, the information on the foundation-structure interaction is lacking. As a result, the seismic performance evaluation of buildings seldom considers the effect of the foundation performance on the building responses. Recent earthquakes such as the 1993 Hokkaido Nansei-oki Earthquake(M=7.8), the 1994 Northridge Earthquake(M=6.7), the 1995 Hyogoken-Nambu Earthquake(M=7.2), and the 1999 Chi-Chi Earthquake (M=7.6) have shown that building damages are significantly affected by the degree of damage sustained by the building foundation and the interaction between the building and the foundation. This paper presents a nonlinear seismic analysis method for the seismic performance evaluation of reinforced concrete buildings which considers the pile foundation-structure interaction. The proposed method is applied to an actual building which was damaged during the 1993 Hokkaido Nansei-oki Earthquake. The result reveal that the method is able to predict the performance of the building.

Analysis of Failure Behavior of Pile Embedded in Liquefiable Soil Deposits considering Buckling Instability (좌굴을 고려한 액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Han, Jin-Tae;Cho, Chong-Suck;Hwang, Jae-Ik;Kim, Myoung-Mo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.105-112
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. However, a case of pile failure was reported despite the fact that a large margin of safety factor was employed in their design. This means that the current seismic design method of pile is not agreeable with the actual failure mechanism of pile. Newly proposed failure mechanism of pile is a pile failure based on buckling instability. In this study, failure behavior of pile embedded in liquefied soil deposits was analyzed considering lateral spreading and buckling instability performing 1g shaking table test. As a result, it can be concluded that the pile subjected to excessive axial loads ($near\;P_{cr}$) can fail by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, lateral spreading increased lateral deflection of pile and reduced the buckling load, promoting more rapid collapse. In addition, buckling shape of pile was observed. In the ease of pile buckling, hinge formed at the middle of the pile, not at the bottom. And in sloping grounds, location of hinge got loiter compared with level ground because of the effects of lateral spreading.

  • PDF

Dynamic Behaviour of Pile Foundation with Scour (세굴을 고려한 말뚝기초의 동적 거동분석)

  • 김정환;허택영;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.55-62
    • /
    • 2003
  • This study considered the effect of scour depth on the behaviour of pile foundation of bridge structure under seismic excitation. The numerical model was composed of the superstructure, pile foundation and soil. The superstructure and pile was modeled by beam elements and soil was by spring elements. The pile head and concrete footing was considered as hinge and rigid connected situation, respectively. A toro-gap element was used to model the expansion joint of superstructure. Nonlinear dynamic analysis was carried out on the constructed model. It was acknowledged that the steel pile become to yield after the scour depth reached about 2.0m.

  • PDF

Study on Improvement of Response Spectrum Analysis of Pile-supported Structure: Focusing on the Natural Periods and Input Ground Acceleration (잔교식 구조물의 응답스펙트럼 해석법 개선사항 도출 연구: 고유주기 및 입력지반가속도를 중점으로)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, Jong-Kwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.17-34
    • /
    • 2020
  • In response spectrum analysis of pile-supported structure, an amplified seismic wave should be used as the input ground acceleration through the site-response analysis. However, each design standard uses different input ground acceleration criteria, which leads to confusion in determining the appropriate input ground acceleration. In this study, the ground accelerations were calculated through dynamic centrifuge model test, and the response spectrum analysis was performed using the calculated ground acceleration. Then, the moments derived from the test and analysis were compared, and a method for determining the appropriate input ground acceleration in response spectrum analysis was presented. Comparison of the experimental and simulated results reveals that modeling of the ground using elastic springs allows proper simulation of the natural period of the structure, and the use of a seismic wave that is amplified at the ground surface as the input ground acceleration provided the most accurate results for the response analysis of pile-supported structures in sands.