• Title/Summary/Keyword: Seismic Safety

Search Result 1,007, Processing Time 0.028 seconds

Evaluation of Pile-Ground Interaction Models of Wind Turbine with Twisted Tripod Support Structure for Seismic Safety Analysis (지진 안전도 해석을 위한 Twisted Tripod 지지 구조를 갖는 풍력발전기의 말뚝-지반 상호작용 모델 평가)

  • Park, Kwang-yeun;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.81-87
    • /
    • 2018
  • The seismic response, the natural frequencies and the mode shapes of an offshore wind turbine with twisted tripod substructure subject to various pile-ground interactions are discussed in this paper. The acceleration responses of the tower head by four historical earthquakes are presented as the seismic response, while the other loads are assumed as ambient loads. For the pile-ground interactions, the fixed, linear and nonlinear models are employed to simulate the interactions and the p-y, t-z and Q-z curves are utilized for the linear and nonlinear models. The curves are designed for stiff, medium and soft clays, and thus, the seven types of the pile-ground interactions are used to compare the seismic response, the acceleration of the tower head. The mode shapes are similar to each other for all types of pile-ground interactions. The natural frequencies, however, are almost same for the three clay types of the linear model, while the natural frequency of the fixed support model is quite different from that of the linear interaction model. The wind turbine with the fixed support model has the biggest magnitude of acceleration. In addition, the nonlinear model is more sensitive to the stiffness of clay than the linear pile-ground interaction model.

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

Evaluation of MCC seismic response according to the frequency contents through the shake table test

  • Chang, Sung-Jin;Jeong, Young-Soo;Eem, Seung-Hyun;Choi, In-Kil;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1345-1356
    • /
    • 2021
  • Damage to nuclear power plants causes human casualties and environmental disasters. There are electrical facilities that control safety-related devices in nuclear power plants, and seismic performance is required for them. The 2016 Gyeongju earthquake had many high-frequency components. Therefore, there is a high possibility that an earthquake involving many high frequency components will occur in South Korea. As such, it is necessary to examine the safety of nuclear power plants against an earthquake with many high-frequency components. In this study, the shaking table test of electrical facilities was conducted against the design earthquake for nuclear power plants with a large low-frequency components and an earthquake with a large high-frequency components. The response characteristics of the earthquake with a large high-frequency components were identified by deriving the amplification factors of the response through the shaking table test. In addition, safety of electrical facility against the two aforementioned types of earthquakes with different seismic characteristics was confirmed through limit-state seismic tests. The electrical facility that was performed to the shaking table test in this study was a motor control center (MCC).

A Study on the Development of a Rapid Safety Assessment System for Buildings Using Seismic Accelerometers (지진가속도 계측기를 이용한 건축물의 긴급 안전성 평가 알고리즘 개발에 대한 연구)

  • Jeong, Seong-Hoon;Jang, Won-Seok;Park, Byung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.161-170
    • /
    • 2020
  • In this study, develop the seismic acceleration measurement data conversion and signal processing algorithms for improve the operational efficiency of the seismic acceleration measurement system installed for public facilities. Through the analysis of the seismic acceleration time history data, the evaluation methods and criteria and evaluating the safety of buildings were proposed. The system was applied to the test bed building to verify its operation and usability. It is expected to be used as a decision making support data and determining the direction and priority of disaster response in the event of an earthquake.

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

Seismic Fragility Evaluation for Railway Bridge Structures using Results of a Safety Factor (철도교의 지진취약도 함수 도출을 위한 안전율평가 결과 이용)

  • Kim, Min-Kyu;Hahm, Dae-Gi;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.57-65
    • /
    • 2009
  • This study is an evaluation of seismic fragility function using the HAZUS program for railway bridge systems, based on the results of previous research on seismic safety factor. First, a fragility function for each of the bridge members was evaluated according to the damage criteria and failure mode. Subsequently, bridge system fragility was evaluated using a fault tree to describe damage status. Finally, a fragility evaluation method for the bridge system was developed, based on the safety factor derived from the previous research.

Performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China

  • Jiang, Huanjun;Lu, Xilin;Zhu, Jiejiang
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.545-560
    • /
    • 2012
  • Design codes provide the minimum requirements for the design of code-compliant structures to ensure the safety of the life and property. As for code-exceeding buildings, the requirements for design are not sufficient and the approval of such structures is vague. In mainland China in recent years, a large number of code-exceeding tall buildings, whether their heights exceed the limit for the respective structure type or the extent of irregularity is violated, have been constructed. Performance-based seismic design (PBSD) approach has been highly recommended and become necessary to demonstrate the performance of code-exceeding tall buildings at least equivalent to code intent of safety. This paper proposes the general methodologies of performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China. The PBSD approach proposed here includes selection of performance objectives, determination of design philosophy, establishment of design criteria for structural components and systems consistent with the desirable and transparent performance objectives, and seismic performance analysis and evaluation through extensive numerical analysis or further experimental study if necessary. The seismic analysis and design of 101-story Shanghai World Financial Center Tower is introduced as a typical engineering example where the PBSD approach is followed. The example demonstrates that the PBSD approach is an appropriate way to control efficiently the seismic damage on the structure and ensure the predictable and safe performance.

Micro-seismic monitoring in mines based on cross wavelet transform

  • Huang, Linqi;Hao, Hong;Li, Xibing;Li, Jun
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1143-1164
    • /
    • 2016
  • Time Delay of Arrival (TDOA) estimation methods based on correlation function analysis play an important role in the micro-seismic event monitoring. It makes full use of the similarity in the recorded signals that are from the same source. However, those methods are subjected to the noise effect, particularly when the global similarity of the signals is low. This paper proposes a new approach for micro-seismic monitoring based on cross wavelet transform. The cross wavelet transform is utilized to analyse the measured signals under micro-seismic events, and the cross wavelet power spectrum is used to measure the similarity of two signals in a multi-scale dimension and subsequently identify TDOA. The offset time instant associated with the maximum cross wavelet transform spectrum power is identified as TDOA, and then the location of micro-seismic event can be identified. Individual and statistical identification tests are performed with measurement data from an in-field mine. Experimental studies demonstrate that the proposed approach significantly improves the robustness and accuracy of micro-seismic source locating in mines compared to several existing methods, such as the cross-correlation, multi-correlation, STA/LTA and Kurtosis methods.

SEISMIC ISOLATION OF NUCLEAR POWER PLANTS

  • Whittaker, Andrew S.;Kumar, Manish;Kumar, Manish
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.569-580
    • /
    • 2014
  • Seismic isolation is a viable strategy for protecting safety-related nuclear structures from the effects of moderate to severe earthquake shaking. Although seismic isolation has been deployed in nuclear structures in France and South Africa, it has not seen widespread use because of limited new build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, design and construction of isolation systems specific to nuclear structures. The funding by the United States Nuclear Regulatory Commission of a research project to the Lawrence Berkeley National Laboratory and MCEER/University at Buffalo facilitated the writing of a soon-to-be-published NUREG on seismic isolation. Funding of MCEER by the National Science Foundation led to research products that provide the technical basis for a new section in ASCE Standard 4 on the seismic isolation of safety-related nuclear facilities. The performance expectations identified in the NUREG and ASCE 4 for seismic isolation systems, and superstructures and substructures are described in the paper. Robust numerical models capable of capturing isolator behaviors under extreme loadings, which have been verified and validated following ASME protocols, and implemented in the open source code OpenSees, are introduced.