• Title/Summary/Keyword: Seismic Resistant

Search Result 292, Processing Time 0.021 seconds

Limited-Ductile Seismic Design and Performance Assessment Method of RC Bridge Piers Based on Displacement Ductility (변위연성도 기반 철근콘크리트 교각의 한정연성 내진 설계법과 성능평가 방법)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • Until recently Korea is considered to be immune from the earthquake hazard because it is located for away from the active fault. However, we have noticed that recent strong earthquakes inflicted enormous losses on human lives and nation's economy all over the world. Hence, there has been raised the importance of the earthquake resistant design for various infrastructures. In this research, new methodologies for the seismic design and performance assessment of reinforced concrete(RC) bridge pier were proposed from experimental results of 82 circular RC bridge piers and 54 rectangular RC bridge piers tested in domestic and aboard. New seismic design method was based on the concept of the limited ductile design, which could be practically used for low or moderate seismic regions like Korea. Further study for the seismic safety of RC bridge piers was carried out to enhance the seismic performance of aged RC bridge piers, which were designed and constructed before implementing the 1992 seismic design provision in Korea. New formula for the seismic performance assessment of RC bridge piers was proposed and practically used for the decision on the need of repair and retrofit of many aged RC bridge piers.

Seismic Performance Preliminary Evaluation Method of Reinforced Concrete Apartments with Bearing Wall system (기존 철근콘크리트 벽식 공동주택의 내진 성능 예비 평가법에 관한 연구)

  • Chung, Lan;Woo, Sung-Sik;Choi, Ki-Young;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.293-300
    • /
    • 2007
  • In Korea, the seismic design regulations was established since 1988 about regularity scale of structures. However, It was not established about seismic performance and evaluation method as the most existing buildings was constructed before Earthquake-Resistant Design(1988). In this study, for model structures which are 4 units of non-seismic designed apartment and 3 units of seismic designed in Korea performed seismic performance evaluation by suggested KISTC (2004). And the result compare to evaluate Capacity Spectrum Method by using MIDAS Gen and SDS. As a result, we observed that suggested KISTC's method have overestimated for shear stress and drift index. The purpose of this study provides most conformity seismic performance evaluation process and the appropriate method of calculating the seismic performance index in Korea.

Seismicity and Response for Mitigating Seismic Hazards (지진활동 및 지진재해 대응 방향)

  • Lee, Deok-Gi
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.4
    • /
    • pp.47-51
    • /
    • 2008
  • The different result and response of the earthquakes, occurred consecutively at China and Japan in May and June. respectively, is suggestive of the importance of preparedness against earthquake disaster. We learned lesson, although indirect, that the earthquake early warning. earthquake-resistant design, and people's concepts on earthquake can greatly reduce the earthquake hazards. The more preparedness we have in present, the less hazards we will experience for future.

  • PDF

Evaluation and Improvement for Seismic Resistant Capacity of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선)

  • 신종학;하기주;최민권;전하석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.411-414
    • /
    • 1999
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were constructed and tesed during vertical and cycle loads simultaneously. Experimental programs were accomplished to evaluate the structural performance of test spcimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio and masonry infilled wall with on without. All the specimens were modelling in one-third scale size.

  • PDF

Review of Design Provisions for Earthquake Resistance of RC Structures in Eurocode 8 (RC 구조물에 대한 Eurocode 8의 내진설계 규준 검토)

  • 이한선;허윤섭;이주은
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.677-682
    • /
    • 1999
  • In this paper, the basic concepts and main characteristics in Eurocode 8, which deals with earthquake-resistant design, are reviewed regarding the design of reinforced concrete structures. Eurocode uses the limit-state design method to satisfy the requirements of safety and serviceability. This kind of information can serve to establish the up-coming Korean seismic code which is comprehensive and appropriate to the moderate seismicity region by constituting an important part in the basic data-pool.

  • PDF

Joint Shear Failure of Reinforced Concrete Interior Beam-Column Joint (내부 보-기둥 접합부의 전단파괴)

  • 이민섭;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.303-308
    • /
    • 2000
  • The design of column joint is an important part of earthquake resistant design of reinforced concrete moment resisting frames. Beam column joints must provide sufficient stiffness and strength to resist and sustain the loads induced by adjacent beams and columns. This paper investigates the difference of the current design codes which provide a different approach for the design of beam column joint in seismic zone. The model provided by Hitoshi Shiohara(1998) is reviewed in this paper, which provides a good relationship between moment and shear action of interior beam column joint and a role shear reinforcement according to their position.

  • PDF

Stud reinforcement in beam-column joints under seismic loads

  • Abdollahzadeh, Gholamreza;Ghalani, Saeed Eilbeigi
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.297-317
    • /
    • 2016
  • Current codes recommend large amounts of shear reinforcement for reinforced concrete beam-column joints that causes significant bar congestion. Increase in congestion of shear reinforcement in joint core (connection zone), leads to increase accomplishment problems. The congestion may also lead to diameter limitations on the beam bars relative to the joint dimensions. Using double headed studs instead of conventional closed hoops in reinforced concrete beam-column joints reduces congestion and ensures easier assembly of the reinforcing cage. The purpose of this research is evaluating the efficiency of the proposed reinforcement. In this way, 10 groups of exterior beam-column joints are modeled. Each group includes 7 specimens by different reinforcing details in their joint core. All specimens are modeled by using of ABAQUS and analyzed subjected to cyclic loading. After verification of analytical modeling with an experimental specimen, 3D nonlinear specimens are modeled and analyzed. Then, the effect of amount and arrangement of headed studs on ductility, performance, ultimate strength and energy absorption has been studied. Based on the results, all joints reinforced with double headed studs represent better performance compared with the joints without shear transverse reinforcement in joints core. The behavior of the former is close to joints reinforced with closed hoops and cross ties according to the seismic design codes. By adjusting the arrangement of double-headed studs, the decrease in ductility, performance, ultimate moment resistant and energy absorption reduce to 2.61%, 0.90%, 0.90% and 1.66% respectively compared with the joints reinforced by closed hoops on the average. Since the use of headed studs reduces accomplishment problems, these amounts are negligible. Therefore, use of double-headed studs has proved to be a viable option for reinforcing exterior beam-column joints.

Analysis on the Dynamic Behavior of Breakwater with the DCM Method Using the Shaking Table Test (진동대시험을 이용한 DCM공법에 따른 방파제의 동적거동 분석)

  • Kim, Youngjun;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.25-32
    • /
    • 2022
  • As recently, there have been two earthquakes with a magnitude of 5.0 or greater in Korea and the number of smaller earthquakes has increased, a lot of research and interest in earthquake-resistant design are increasing. Especially, the Pohang earthquake has also raised interest in earthquake-resistant design of port facilities. In this study, experiments and analysis were conducted on the dynamic behavior of upright and inclined breakwaters during earthquakes among port structures through the 1g shaking table test. To this end, three seismic waves were applied to the model to which the similarity law (scale effect) was applied: long period (Hachinohe), short period (Ofunato) and artificial seismic waves. The acceleration and displacement of the upright and inclined breakwaters were analyzed according to whether the DCM method was reinforced during earthquakes based on the results of shaking table test. As the result, the dynamic behavior of the upright and inclined breakwater shows a tendency to suppress the amplification of acceleration as bearing capacity and rigidity increase when DCM method is reinforced.

Development of Air Spring Damper System(ASDS) (공기 스프링 댐퍼 시스템(ASDS)의 개발)

  • Kim, Dong Baek;Park, Heung Sik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.829-838
    • /
    • 2021
  • Purpose: The Air Spring Damper System (ASDS) is proposed when existing concrete structures that have not been seismic resistant for economic and technical reasons or low-rise concrete structures that are difficult to earthquake. Method: To conduct a study on the damping force antigen in the kinetic equation of free vibration, we analyze whether this device has damping ability as a damper experimentally and theoretically, and examine the possibility of field application. Result: The air damper system is considered to be more economical than steel hysteresis dampers even if the number of dampers increases due to its easy manufacture and construction and low restrictions on shape, size, material, etc. Conclusion: In an air spring damper system, it is essential to reduce the diameter of the air inlet/outlet hole to improve the damping ratio, and in this case, if the diameter exceeds a certain lower limit, consideration of the compressibility of air is required, so further research is needed.

A Study on the Seismic Performance Improvement of Mid and Low-Rise RC Grid Structures Using Steel Slab Hysteretic Damper (강재 슬래브 이력형 댐퍼(SSHD)를 이용한 중·저층 RC 격자 구조물의 내진성능 향상에 관한 연구)

  • Kim, Dong Baek;Lee, In Duk;Choi, Jung Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.418-426
    • /
    • 2019
  • Purpose: After analyzing the seismic capability of low-rise RC grid structures with insufficient seismic performance, the purpose of the project is to install steel slab hysteretic dampers (SSHD) to improve the seismic performance of beams and columns, and to suggest measures to minimize damage to the structure and human damage when an earthquake occurs. Method: The evaluation of the seismic performance of a structure is reviewed based on the assumption that the seismic performance is identified for the grid-type subway systems that are not designed to be seismic resistant and the installation of an SSHD system, a method that minimizes construction period, if insufficient, is required. Result: After the application and reinforce of structure with SSHD, and the results of eigenvalue analysis are as follows. The natural periodicity of longitudinal direction was 0.55s and that of vertical direction was 0.58s. Conclusion: As results of cyclic load test of structure with SSHD, the shear rigidity of damper is 101%, the energy dissipation rate is 108% and, plastic rotation angle of all column and beam is satisfied for $I_o$ level and therefore it is judged that the reinforce effect is sufficient.