• Title/Summary/Keyword: Seismic Isolation System

Search Result 331, Processing Time 0.034 seconds

Mechanical Characteristic Analysis of Coil Spring & Viscous Damper (Coil Spring & Viscous Damper System의 동특성분석)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.19-26
    • /
    • 2007
  • This paper presents the results of experimental studies of the mechanical characteristics of the Coil Spring and Viscous Damper system. The Coil Spring and Viscous Damper systems were selected for the isolation of Emergency Diesel Generator (EDG) which is located in Nuclear Power Plant (NPP). The Coil Spring and Viscous Damper systems were developed for the operating vibration isolation and seismic isolation for scaled Model EDG System. The damping properties of the viscous damper changes as the variation of velocity. Through this research nonlinear damping characteristics and the effective stiffness of coil spring and viscous damper system were evaluated.

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

Study of Integrated Optimal Design of Smart Top-Story Isolation and Building Structures in Regions of Low-to-Moderate Seismicity (중약진지역 구조물과 스마트 최상층 면진시스템의 통합최적설계에 대한 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2013
  • In order to reduce seismic responses of a structure, additional dampers and vibration control devices are generally considered. Usually, control performance of additional devices are investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a building structure with smart top-story isolation system has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions. The integrated optimal design method proposed in this study can provide various optimal designs that presents good control performance by appropriately reducing the amount of structural material and damping device.

Seismic Responses of Wall-Slab Apartment Building Structures Built on the Soft Soil Layer Considering the Stiffnesses of a Foundation-Soil System (연약지반의 기초지반강성을 고려한 벽식구조 아파트의 지진응답)

  • 김지원;김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.19-27
    • /
    • 2001
  • In this seismic analyses of structures, it is well recognized that the effects of soil-structure interaction can not be ignored and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show the significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out with the rigid base ignoring the characteristics of the foundation and the properties of the underlying soil. In this study, seismic analyses of wall-slob type apartment buildings which have a particular structural type were carried out taking into account the soft soil layer comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Low-rise or middle height wall-slab type apartment buildings built on the deep soft soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is considerably safe but uneconomical to utilize the design spectra of UB-97 for the seismic design of wall-slab type apartment buildings due to conservative design.

  • PDF

Piecewise exact solution for seismic mitigation analysis of bridges equipped with sliding-type isolators

  • Tsai, C.S.;Lin, Yung-Chang;Chen, Wen-Shin;Chiang, Tsu-Cheng;Chen, Bo-Jen
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.205-215
    • /
    • 2010
  • Recently, earthquake proof technology has been widely applied to both new and existing structures and bridges. The analysis of bridge systems equipped with structural control devices, which possess large degrees of freedom and nonlinear characteristics, is a result in time-consuming task. Therefore, a piecewise exact solution is proposed in this study to simplify the seismic mitigation analysis process for bridge systems equipped with sliding-type isolators. In this study, the simplified system having two degrees of freedom, to reasonably represent the large number of degrees of freedom of a bridge, and is modeled to obtain a piecewise exact solution for system responses during earthquakes. Simultaneously, we used the nonlinear finite element computer program to analyze the bridge responses and verify the accuracy of the proposed piecewise exact solution for bridge systems equipped with sliding-type isolators. The conclusions derived by comparing the results obtained from the piecewise exact solution and nonlinear finite element analysis reveal that the proposed solution not only simplifies the calculation process but also provides highly accurate seismic responses of isolated bridges under earthquakes.

Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry

  • Chen, Pei-Ching;Hsu, Shiau-Ching;Zhong, You-Jin;Wang, Shiang-Jung
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.91-106
    • /
    • 2019
  • Adopting sloped rolling-type isolation devices underneath a raised floor system has been proved as one of the most effective approaches to mitigate seismic responses of the protected equipment installed above. However, pounding against surrounding walls or other obstructions may occur if such a base-isolated raised floor system is subjected to long-period excitation, leading to adverse effects or even more severe damage. In this study, real-time hybrid simulation (RTHS) is adopted to assess the control performance of a smart base-isolated raised floor system as it is an efficient and cost-effective experimental method. It is composed of multiple sloped rolling-type isolation devices, a rigid steel platen, four magnetorheological (MR) dampers, and protected high-tech equipment. One of the MR dampers is physically tested in the laboratory while the remainders are numerically simulated. In order to consider the effect of input excitation characteristics on the isolation performance, the smart base-isolated raised floor system is assumed to be located at the roof of a building and the ground level. Four control algorithms are designed for the MR dampers including passive-on, switching, modified switching, and fuzzy logic control. Six artificial spectrum-compatible input excitations and three slope angles of the isolation devices are considered in the RTHS. Experimental results demonstrate that the incorporation of semi-active control into a base-isolated raised floor system is effective and feasible in practice for high-tech industry.

Seismic mitigation of an existing building by connecting to a base-isolated building with visco-elastic dampers

  • Yang, Zhidong;Lam, Eddie S.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study investigates the feasibility of retrofitting an existing building by connecting the existing building to a new building using connecting dampers. The new building is base-isolated and viscoelastic dampers are assigned as connecting dampers. Scaled models are tested under three different earthquake records using a shaking table. The existing building and the new building are 9 and 8 stories respectively. The existing building model shows more than 3% increase in damping ratio. The maximum dynamic responses and the root mean square responses of the existing building model to earthquakes are substantially reduced by at least 20% and 59% respectively. Further, numerical models are developed by conducting time-history analysis to predict the performance of the proposed seismic mitigation system. The predictions agree well with the test results. Numerical simulations are carried out to optimize the properties of connecting dampers and base isolators. It is demonstrated that more than 50% of the peak responses can be reduced by properly adjusting the properties of connecting dampers and base isolators.

A study on the characteristics of friction pendulum isolation bearings (마찰진자형 면진베어링의 특성 연구)

  • 김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.407-414
    • /
    • 2000
  • The friction pendulum type seismic isolation system (FPS) has been developed to provide a simple and effective way to achieve earthquake resistance for buildings . The major advantages are: the isolation frequency can be easily achieved by designing a curvature of the surface and does not depend on the supported weight of a structure. The function of carrying vertical load is separated to the function of providing horizontal stiffness. Next the friction provides sufficient energy dissipation to protect the structure from earthquake response and resistance to the weak external disturbances such as wind load and ground vibrations due to traffic. In this paper, the friction coefficients are evaluated from number of experiments on the FPS test specimens. The relations between friction coefficient and the test waveform, velocity, and pressure are reviewed and further works are discussed.

  • PDF

Response Control of Structure by Frictional Base Isolation System : Rigid-Mass Model (마찰지진격리장치와 구조물의 응답제어: 강체질량모델에서의 적용)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.426-431
    • /
    • 2001
  • Seismic performance of base isolated rigid-mass model were studied through shaking table tests. Friction pendulum systems (FPS), pure-friction systems with laminated rubber bearing (LRB) were selected for the comparison of performance. Performance of specially designed isolation systems were tested statically using actuator and dynamically using shaking table. Numerical methods were developed to simulate the nonlinear behavior of the frictional base isolation systems. Two models were considered. one is modified Bouc-Wen model considering breakaway coefficient of friction and the other is classical Coulomb model. The results of numerical methods are found to be in very good agreement with test results.

  • PDF

The Study of Dynamic Characteristic of a Viscous Fluid Damper in Vibration Isolation (진동 방지용 점성 유체 댐퍼의 동특성 해석에 관한 연구)

  • 권오병;이강민;김유민;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1136-1140
    • /
    • 2001
  • Viscous fluid damper is used for vibration isolation of piping system, presses, turbo-generator and other heavy industrial equipments, as well as seismic isolation of buildings structure. So dynamic characteristic of viscous fluid damper is very important. This paper presents the result of the study of dynamic characteristic of viscous fluid damper. And the force-displacement relation of the viscous damper is described by experimentally calibrated fractional derivative Maxwell Model. The proposed model is validated by dynamic testing and A good agreement between predicted and experimental results is obtained.

  • PDF