• 제목/요약/키워드: Seismic Boundary

검색결과 299건 처리시간 0.022초

단부 횡보강이 없는 세장한 전단벽의 내진성능 (Earthquake-Resistance of Slender Shear Wall with No Boundary Confinement)

  • 박홍근;강수민;조봉호;홍성걸
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.47-57
    • /
    • 2000
  • Experimental and numerical studies were done to investigate seismic performance of slender shear walls with no boundary confinement that are principal structural members of high0rise bearing wall buildings. 1/3 scale specimens that model the plastic region of long slender shear walls subjected to combined axial load and bending moment were tested to investigate strength, ductility, capacity of energy dissipation, and strain distribution, The experimental results show that the slender shear walls fail due to early crushing in the compressive boundary, and then have very low ductility. The measured maximum compressive strain is 0.0021, much less than 0.004 being commonly used for estimation of ductility. This result indicates that the maximum compressive strain is not a fixed value but is affected by moment gradient along the shear wall height and distance from the neutral axis to the extreme compressive fiber.

Lateral seismic response of building frames considering dynamic soil-structure interaction effects

  • RezaTabatabaiefar, S. Hamid;Fatahi, Behzad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.311-321
    • /
    • 2013
  • In this study, to have a better judgment on the structural performance, the effects of dynamic Soil-Structure Interaction (SSI) on seismic behaviour and lateral structural response of mid-rise moment resisting building frames are studied using Finite Difference Method. Three types of mid-rise structures, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600m/s, representing soil classes $C_e$, $D_e$ and $E_e$, according to Australian Standard AS 1170.4. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil-structure interaction), and (ii) flexible-base (considering soil-structure interaction). The results of the analyses in terms of structural lateral displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that the dynamic soil-structure interaction plays a considerable role in seismic behaviour of mid-rise building frames including substantial increase in the lateral deflections and inter-storey drifts and changing the performance level of the structures from life safe to near collapse or total collapse. Thus, considering soil-structure interaction effects in the seismic design of mid-rise moment resisting building frames, particularly when resting on soft soil deposit, is essential.

울산단층대에서의 굴절파 속도이방성 연구 (Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone)

  • 이광자;김기영;김우혁;임창복
    • 지구물리
    • /
    • 제3권1호
    • /
    • pp.49-56
    • /
    • 2000
  • 울산단층의 단층분절 연구의 일환으로, 울산단층의 파쇄대로 추정되는 경주-울산간 7번국도와 인접한 지역 17개 측점에서 워커웨이 자료를 획득하였으며, 1-48 m의 옵셋구간에서 기록된 굴절파의 속도이방성을 측정하였다. 기록된 굴절 P파 속도는 평균 1787 m/s로 기반암의 풍화층 상부에서 굴절된 파로 해석되며, 속도이방성은 평균 0.056으로 구조선이 예상주향방향과 일치함을 간접적으로 시사한다. 경상북도와 경상남도의 도경계선를 기준으로 남쪽에서는 예상주향방향의 속도가 예상 경사방향보다 빠른 정상적인 이방성을 보이나, 북쪽으로는 단층의 주향이 여러 방향으로 갈라져있거나, 예상경사방향으로 발달된 구조선이 많이 발달해 있을 가능성이 높은 것으로 분석되었다. 이는 단층이 도경계선 부근을 경계로 울산단층이 분절되어 있을 가능성을 시사한다.

  • PDF

경계요소 횡보강근의 상세와 배근간격에 따른 특수전단벽의 내진성능 (Seismic Performance of Special Shear Wall with the Different Hoop Reinforcement Detail and Spacing in the Boundary Element)

  • 천영수
    • 토지주택연구
    • /
    • 제6권1호
    • /
    • pp.11-19
    • /
    • 2015
  • 이 논문에서는 최근 강화된 내진규정에 의하여 현장에서 시공에 어려움을 겪고 있는 특수전단벽의 배근상세를 완화할 목적으로 제안된 경계요소 횡보강상세에 대하여 횡보강근의 형태와 배근간격에 따른 실험결과를 제시하고 있다. 실험결과, 제안된 횡보강 상세를 채용한 실험체의 균열 및 파괴양상은 폐쇄형 후프를 사용한 실험체와 유사한 경향을 나타내었으며, 최대강도도 예상값을 모두 상회하는 것으로 나타났다. 또한, 에너지 소산능력을 비교한 결과, 완화된 배근상세를 따르는 실험체(SSWR2)의 경우 기존 설계기준의 특수전단벽 실험체(SSW2)와 유사한 내진성능을 가지고 있는 것으로 나타났으며, 설계기준에서 제시하고 있는 1.5% 수준의 변형각 조건을 충분히 만족하고 있어 구조물의 주요 횡력저항 요소로서 사용될 수 있을 것으로 판단된다.

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements

  • Cavuslu, Murat
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.207-227
    • /
    • 2022
  • In general, the interaction conditions between the discrete stones are not taken into account by structural engineers during the modeling and analyzing of historical stone bridges. However, many structural damages in the stone bridges occur due to ignoring the interaction conditions between discrete stones. In this study, it is aimed to examine the seismic behavior of a historical stone bridge by considering the interaction stiffness parameters between stone elements. For this purpose, Tokatli historical stone arch bridge was built in 1179 in Karabük-Turkey, is chosen for three-dimensional (3D) seismic analyses. Firstly, the 3D finite-difference model of the Tokatli stone bridge is created using the FLAC3D software. During the modeling processes, the Burger-Creep material model which was not used to examine the seismic behavior of historical stone bridges in the past is utilized. Furthermore, the free-field and quiet non-reflecting boundary conditions are defined to the lateral and bottom boundaries of the bridge. Thanks to these boundary conditions, earthquake waves do not reflect in the 3D model. After each stone element is modeled separately, stiffness elements are defined between the stone elements. Three situations of the stiffness elements are considered in the seismic analyses; a) for only normal direction b) for only shear direction c) for both normal and shear directions. The earthquake analyses of the bridge are performed for these three different situations of the bridge. The far-fault and near-fault conditions of 1989 Loma Prieta earthquake are taken into account during the earthquake analyses. According to the seismic analysis results, the directions of the stiffness parameters seriously changed the earthquake behavior of the Tokatli bridge. Moreover, the most critical stiffness parameter is determined for seismic analyses of historical stone arch bridges.

유한차분법을 이용한 3차원 지진파 전파 모의 (Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method)

  • 강태섭
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석 (Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

한국 동해안의 지진해일(Tsunami) 예측 (Tsunami Forecasting along the East Coast of Korea)

  • 추교승
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.57-69
    • /
    • 1997
  • All of the Tsumami which affected severly the east coast of the Korean Peninsula in the years 1741-1993 are caused by earthquakes occurred along the boundary sea of Japan and norther Honshu. These earthquakes with magnitude greater than 7.0 are results of relative movement between the North American Plate and Urasian Plate. The active fault along the boundary of the two plates is attracted by many researchers since the 1983 May earthquake of magnitude 7.7. It is important to anticipate when the next large earthquake will occur and how much it affect the east coast of Korea. Among a few models of spatial seismic gap were proposed for earthquake occurrences accompanying Tsunami, Ishikawas' east-west seismic gap model is the most probable one. There is a tendency that the period between the activities of the active faults becomes shorter. It is expected that a large earthquake of magnitude 7.0 or above will occur along the eastern boundary of Japan Sea at the end of this century and produce Tsunami at the east coast of Korea.

  • PDF

비균질 퇴적층으로 인한 지진파 증폭의 경계/유한요소 해석 (Boundary/Finite Element Analysis of the Seismic Wave Amplifications due to Nonhomogeneous Alluvial Deposits)

  • 김효건;손영호;김종주;최광규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.463-470
    • /
    • 1998
  • The boundary/finite element analysis for the seismic wave amplifications due to nonhomogeneous alluvial deposits was performed in this study. For numerical analysis, the homogeneous linear elastic soil half-space was modeled by using the 3-node isoparametric boundary elements and the inhomogeneous alluvial deposit was modeled by using the 8-node isoparametric finite elements. The two elements at interface were coupled together by the equilibrium condition of the tractions and the compatibility condition of the displacements. As a prarmetric variable, the incident angle and the dimensionsless frequency of the SH, P and SV-waves and the shear wave velocity ratio and the mass density ratio between the half-space and the alluvial deposit were selected.

  • PDF