• Title/Summary/Keyword: Seifert surfaces

Search Result 7, Processing Time 0.028 seconds

THE BOUNDARIES OF DIPOLE GRAPHS AND THE COMPLETE BIPARTITE GRAPHS K2,n

  • Kim, Dongseok
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.399-415
    • /
    • 2014
  • We study the Seifert surfaces of a link by relating the embeddings of graphs with induced graphs. As applications, we prove that every link L is the boundary of an oriented surface which is obtained from a graph embedding of a complete bipartite graph $K_{2,n}$, where all voltage assignments on the edges of $K_{2,n}$ are 0. We also provide an algorithm to construct such a graph diagram of a given link and demonstrate the algorithm by dealing with the links $4^2_1$ and $5_2$.

A CLASSIFICATION OF LINKS OF THE FLAT PLUMBING BASKET NUMBERS 4 OR LESS

  • Kim, Dongseok
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.253-264
    • /
    • 2014
  • Flat plumbing basket surfaces of links were introduced to study the geometry of the complement of the links. In present article, we study links of the flat plumbing basket numbers 4 or less using a special presentation of the flat plumbing basket surfaces. We find a complete classification theorem of links of the flat plumbing basket numbers 4 or less.

An-annular Complexes in 3-manifolds

  • Rieck, Yo'av
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.549-559
    • /
    • 2005
  • Given a non-Haken, non Seifert fibred manifold we describe an algorithm that takes 2 (not necessarily distinct) Heegaard surfaces and produces a complex with certain useful properties (Properties 5.1). Our main tool is Rubinstein and Scharlemann's Cerf theoretic work ([5]).

  • PDF

THE BASKET NUMBERS OF KNOTS

  • Bang, Je-Jun;Do, Jun-Ho;Kim, Dongseok;Kim, Tae-Hyung;Park, Se-Han
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.115-128
    • /
    • 2015
  • Plumbing surfaces of links were introduced to study the geometry of the complement of the links. A basket surface is one of these plumbing surfaces and it can be presented by two sequential presentations, the first sequence is the flat plumbing basket code found by Furihata, Hirasawa and Kobayashi and the second sequence presents the number of the full twists for each of annuli. The minimum number of plumbings to obtain a basket surface of a knot is defined to be the basket number of the given knot. In present article, we first find a classification theorem about the basket number of knots. We use these sequential presentations and the classification theorem to find the basket number of all prime knots whose crossing number is 7 or less except two knots $7_1$ and $7_5$.

EVERY LINK IS A BOUNDARY OF A COMPLETE BIPARTITE GRAPH K2,n

  • Jang, Yongjun;Jeon, Sang-Min;Kim, Dongseok
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.403-414
    • /
    • 2012
  • A voltage assignment on a graph was used to enumerate all possible 2-cell embeddings of a graph onto surfaces. The boundary of the surface which is obtained from 0 voltage on every edges of a very special diagram of a complete bipartite graph $K_{m,n}$ is surprisingly the ($m,n$) torus link. In the present article, we prove that every link is the boundary of a complete bipartite multi-graph $K_{m,n}$ for which voltage assignments are either -1 or 1 and that every link is the boundary of a complete bipartite graph $K_{2,n}$ for which voltage assignments are either -1, 0 or 1 where edges in the diagram of graphs may be linked but not knotted.

The Existence of an Alternating Sign on a Spanning Tree of Graphs

  • Kim, Dongseok;Kwon, Young Soo;Lee, Jaeun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.513-519
    • /
    • 2012
  • For a spanning tree T of a connected graph ${\Gamma}$ and for a labelling ${\phi}$: E(T) ${\rightarrow}$ {+,-},${\phi}$ is called an alternating sign on a spanning tree T of a graph ${\Gamma}$ if for any cotree edge $e{\in}E({\Gamma})-E(T)$, the unique path in T joining both end vertices of e has alternating signs. In the present article, we prove that any graph has a spanning tree T and an alternating sign on T.