• Title/Summary/Keyword: Segregating generation

Search Result 11, Processing Time 0.027 seconds

Development of highly uniform variety for processing using SSR markers in radish (Raphanus sativus L) (분자표지를 활용한 고품질 가공용 고순도 무 품종 육성)

  • Jung, Un-Hwa;Oh, Jong-Hyuck;Kim, Young-Gyu;Ahn, Chun-Hee;Lee, Kwang-Sik;Choi, Su-Ryun;Lim, Yong-Pyo;Park, Su-Hyoung;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.56-63
    • /
    • 2014
  • Using commercial radish varieties for processing, about 30% of radish was discarded due to the root shape and low purity. To raise the processing ability, we tried to develop a new variety producing H-shaped root. As another characteristic required in variety for processing is high purity, we tried to raise purity using simple sequence repeats (SSR) markers for testing seed purity in every segregating generation. To develop Male-sterile (MS) seeding parent, we crossed commercial variety of 'Gwan dong spring' and 'Gyeo ryong spring'. One elite inbred was selected as recurrent parent for the MS plant. The major horticultural traits of selected inbred line were disease resistance, late bolting, heat resistance and bright green root top color. To develop pollen parent, we crossed commercial variety of 'Tae sang king' and 'Seoul spring'. We used individual selection method to develop H-shaped hard root and disease resistant inbred. In each segregating generation, we selected one plant based on phenotype and the uniformity of selected plant was tested by SSR markers using self-pollinated seeds. In the first segregating generation, 64.6% of sib plants shared the same band in PCR amplification using ACMP-490 primer and 66.7% using cnu-316 primer. The uniformity of segregating generations using ACMP-490 and cnu-316 raised in second generation to 68.8%, 70.8%, respectively; in third generation to 93.8%, 100%; in fourth generation to 93.8%, 100%; in fifth generation to 95.8%, 100%; in sixth generation to 100%, 100%. A novel cross was made using selected MS parent and pollen parent. When we checker the horticultural traits using autumn cultivation, the novel cross variety produced H-shaped root comparing other commercial varieties and produced highly uniform radish. Thus we registered this novel cross variety as 'YR ORE' at 2013 (Registration No. 4550).

Inheritance of Resistance to Phytophthora capsici by Inoculums in Korean Hot Pepper (고추 역병균의 접종원에 따른 역병 저항성의 유전 양식)

  • Soh, Jaewoo;Han, Kyung-Sook;Lee, Sung-Chan;Lee, Jung-Sup
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.317-323
    • /
    • 2012
  • The study aims to identify the pathogenicity of Phytophthora. capsici isolates in major pepper-producing areas in Korea and the inherit genetic pattern of phytophthora blight resistance by inocula. With five kinds of testing materials including 'Kataguma (Sakata Korea)' peppers, a disease-susceptible material, '#308', a phytophthora blight resistance material, 'CM334', and their $F_1$ and $F_2$, respective isolates of P. capsici obtained from Icheon, Eumseong, Buan, Imsil and Yeongyang regions together with six kinds of peppers' inoculum including PA-159 (KACC No.40482) received from Korean Agricultural Culture Collection were used for inoculation. The disease-susceptible material '#308', the resistant material 'CM334' and the non-segregating generation of $F_1$ represented 4.94-5.00, 1.00-1.07, and 1.01-1.08 phytophthora blight incidence respectively in the group comparison by isolate. This result means that the phytophthora blight resistance was clearly distinguished among testing materials in the group comparison by P. capsici isolate. Moreover, $F_2$ segregating generation showed 1.79-2.31 phytophthora blight incidence which turned out to be identical in the group comparison by the six isolates of P. capsici isolate and with similarity between both the resistant and susceptible materials. Thus, the result proved that using the six isolates of P. capsici tested as inocula was suitable to investigate the phytophthora blight resistance. When it comes to group comparison of $F_2$ segregation generation, however, isolates were divided with PA-159 isolate being the center: a group consisting of isolates from Icheon, Buan, and Imsil and a group consisting of Yeongyang and Eumseong isolates with higher pathogenicity. The expected segregation ratio of the phytophthora blight resistance in $F_2$ generation by isolate was analyzed. PA-159 isolate showed 3:1 or 9:3:3:1, indicating that one to two genes were involved. On the other hand, results also proved that there is an interaction of genes since both Eumseong and Yeongyang isolates showed a segregation ratio of 11:5 while the Icheon isolate represented 12:3:1.

SDN Based Mobility in Enterprise Wireless Network (엔터프라이즈 무선네트워크에서 SDN 기반 이동성 연구)

  • Challa, Rajesh;Yeom, Sanggil;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.335-336
    • /
    • 2015
  • Seamless mobility is one of the most crucial feature of telecommunication industry. Researches are going on in full swing to deal with this feature in most efficient manner. Software Defined Networking (SDN) is seen as the next generation paradigm which can facilitate seamless mobility across heterogeneous networks by segregating the control plane and data plane functionalities, and logically centralizing the control plane. In this paper, we propose a simplified Layer 2 handover mechanism for enterprise wireless networks, based on SDN framework. We present a network assisted L2 handover method using the IEEE 802.21 Media Independent Handover (MIH) protocol and SDN concepts, to achieve seamless mobility across heterogeneous networks.

Resistance to Anthracnose Caused by Colletotrichum acutatum in Chili Pepper(Capsicum annuum L.)

  • Kim, Sang-Hoon;Yoon, Jae-Bok;Do, Jae-Wahng;Park, Hyo-Guen
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.277-280
    • /
    • 2007
  • Pepper fruit anthracnose, caused by Colletotrichum acutatum, results in serious yield loss and affects crop quality in many Asian countries, making it a disease of economic consequence. A source resistant to C. acutatum was identified by the AVRDC within the line Capsicum chinense Jacq. PBC932. The resistant breeding line C. annuum AR is the $BC_3F_6$ generation derived from C. chinense Jacq. PBC932. The inheritance of resistance to C. acutatum was analyzed in segregating populations derived from the two crosses HN 11$\times$AR and Daepoong-cho$\times$AR. Detached mature green fruits were inoculated using microinjection method. The disease response was evaluated as the disease incidence at 7 DAI. The segregation ratios of resistance and susceptibility to C. acutatum in the $F_2$ and $BC_R$ populations derived from the two crosses fit significantly to a 1:3 Mendelian model. This indicates that the resistance of AR to C. acutatum is controlled by a single recessive gene.

  • PDF

Estimation of Gene Effects in Four Bivoltine Silkworm (Bombyx mori L.) Crosses

  • Malik, G.N.;Singh, T.P.;Rufaie, S.Z.Haque;Aijaz, M.;Dar, H.U.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.1
    • /
    • pp.113-115
    • /
    • 2004
  • Six generations (P$_1$, P$_2$, F$_1$, BC$_1$, BC$_2$ and F$_2$) of four bivoltine silkworm crosses (SKAU-R-1 ${\times}$ Yakwei, SKAU-R-6 ${\times}$ Yakwei, CSR$_2$ ${\times}$ CSR$_4$ and SH$_{6}$${\times}$ NB$_4$D$_2$) were evaluated in a completely randomized block design with 5 replications for each treatment. The generation mean 2 in respect of 3 metric traits (single cocoon weight, single shell weight, and shell ratio %), were subjected to Cavallis joint scaling test. Additive dominance model was found to be adequate in CSR$_2$${\times}$CSR$_4$ and SH$_{6}$${\times}$ NB$_4$D$_2$ for single cocoon weight and shell weight and SKAU-R-6 ${\times}$ Yakwei for shell ratio(%). Whereas, in rest of the crosses epistasis was evident in the traits under investigation. Magnitude of additive gene effect (d) was greater than dominance(h) in SH$_{6}$${\times}$NB$_4$D$_2$ and SKUA-R-6${\times}$Yakwei for shell ratio (%) and in CSR$_2$${\times}$ CSR$_4$ for shell weight. Thus selection for these traits in early segregating generations of these crosses would be effective for obtaining considerable genetic gain. gain.

Detection of Mendelian and Parent-of-origin Quantitative Trait Loci in a Cross between Korean Native Pig and Landrace I. Growth and Body Composition Traits

  • Kim, E.H.;Choi, B.H.;Kim, K.S.;Lee, C.K.;Cho, B.W.;Kim, T.-H.;Kim, J.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.669-676
    • /
    • 2007
  • This study was conducted to detect quantitative trait loci (QTL) affecting growth and body composition in an $F_2$ reference population of Korean native pig and Landrace crossbreds. The three-generation mapping population was generated with 411 progeny from 38 $F_2$ full-sib families, and 133 genetic markers were used to produce a sex-average map of the 18 autosomes. The data set was analyzed using least squares Mendelian and parent-of-origin interval-mapping models. Lack-of-fit tests between the models were used to characterize QTL for mode of expressions. A total of 8 (39) QTL were detected at the 5% genome (chromosome)-wise level for the 17 analyzed traits. Of the 47 QTL detected, 21 QTL were classified as Mendelian expressed, 13 QTL as paternally expressed, 6 QTL as maternally expressed, and 7 QTL as partially expressed. Of the detected QTL at 5% genome-wise level, two QTL had Mendelian mode of inheritance on SSC6 and SSC9 for backfat thickness and bone weight, respectively, two QTL were maternally expressed for leather weight and front leg weight on SSC6 and SSC12, respectively, one QTL was paternally expressed for birth weight on SSC4, and three QTL were partially expressed for hot carcass weight and rear leg weight on SSC6, and bone weight on SSC13. Many of the Mendelian QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects that heterosis for growth is appreciable in a cross between Korean native pig and Landrace. Our results indicate that alternate breed alleles of growth and body composition QTL are segregating between the two breeds, which could be utilized for genetic improvement of growth via marker-assisted selection.

Association of A/T Rich Microsatellites with Responses to Artificial Selection for Larval Developmental Duration in the Silkworm Bombyx mori

  • Pradeep, Appukuttan Nair Retnabhavan;Awasthi, Arvind Kumar;Urs, Raje Siddaraje
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.467-478
    • /
    • 2008
  • Simple sequence repeats (SSRs) and interSSR (ISSR) marker systems were used in this study to reveal genetic changes induced by artificial selection for short/long larval duration in the tropical strain Nistari of the silkworm Bombyx mori. Artificial selection separated longer larval duration (LLD) ($29.428{\pm}0.723days$) and shorter larval duration (SLD) ($22.573{\pm}0.839days$) lines from a base, inbred population of Nistari (larval span of $23.143{\pm}0.35days$). SSR polymorphism was observed between the LLD and SLD lines at one microsatellite locus, Bmsat106 ($CA_7$) and at two loci of 1074 bp and 823 bp generated with the ISSR primer UBC873. Each of these loci was present only in the LLD line. The loci segregated in the third generation of selection and were fixed in opposite directions. In the $F_2$ generation of the $LLD{\times}SLD$ lines, the alleles of Bmsat106 and $UBC873_{1074bp}$ segregated in a 1:1 ratio and the loci were present only in the LLD individuals. $UBC873_{823bp}$ was homozygous. Single factor ANOVA showed a significant association between the segregating loci and longer larval duration. Together, the two alleles contributed to an 18% increase in larval duration. The nucleotide sequences of the $UBC873_{1074bp}$ and $UBC873_{823bp}$ loci had 67% A/T content and consisted of direct, reverse, complementary and palindromic repeats. The repeats appeared to be "nested" (59%) in larger repeats or as clustered elements adjacent to other repeats. Of 203 microsatellites identified, dinucleotides (67.8%) predominated and were rich in A/T and T/A motifs. The sequences of the $UBC873_{1074bp}$ and $UBC873_{823bp}$ loci showed similarity (E = 0.0) to contigs located in Scaffold 010774 and Scaffold 000139, respectively, of the B. mori genome. BLASTN analysis of the $UBC873_{1074bp}$ sequence showed significant homology of (nt.) 45-122 with upstream region of three exons from Bombyx. The complete sequence of this locus showed ~49% nucleotide conservation with transposon 412 of Drosophila melanogaster and the Ikirara insertions of Anopheles gambiae. The A + T richness and lack of coding potential of these small loci, and their absence in the SLD line, reflect the active process of genetic change associated with the switch to short larval duration as an adaptation to the tropics.

Genetic Relationship between Seed size and Leaf Size in 66 $F_2$ Populations Derived from Mating of 12 Soybean Strains (대두 12 모본의 half diallel cross로부터 생성된 66 $F_2$ 분리집단에서의 종자크기와 잎 크기에 대한 관계)

  • 정종일
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.437-442
    • /
    • 1998
  • Seed and leaf size is the important morphological traits considered by plant breeder and is the important yield components in soybean. The objective of this research was to know the relationship between seed size and leaf size in 66 $F_2$ populations derived from half diallel mating system with 12 soybean strains, representing distinct seed and leaf size. The range of seed size for 12 parents used was 6.7 to 43.8 g/100 seed. Leaf width leaf length ranged 5.7 to 8.6 cm and 9.4 to 12.9 cm, respectively. Leaf width was highly correlated with leaf length with an R square of 0.754 in the $F_2$ generation. The $F_2$ regression` coefficient indicated that leaves were, on average 1.4 times greater length than in width . Leaf size (width) was highly correlated (r.0.91) with seed size (g/100 seed) in the $F_2$ generation with an R square of 0.833. Our results indicate postive correlation within seed and leaf size is common in $F_2$ segregating populations derived from crossing with soybean. The strong liner relationship we observed between leaf size and seed size in $F_2$ segragating population is useful in that in that indirect selection for a secondary character may be superior to direct selection for the primary character.

  • PDF

Genetic Analysis of Agronomic Characters in Interspecific Cross in Soybean (콩 종간교잡에서 주요형질의 유전분석)

  • Lee, Jeong-Dong;Kwon, Taek-Hwa;Cho, Ho-Young;Hwang, Young-Hyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.20
    • /
    • pp.1-8
    • /
    • 2002
  • This study was conducted to obtain the information of varietal development using wild soybean through investigation of variation and heredity of major agronomic characters in $F_2$ generation of interspecific cross between Glycine max and G. soja. In segregating populations of two crosses, all characters observed except 100-seed weight showed transgressive segregation. Days to flowering showed normal distribution; mean days to flowering in $F_1$, and $F_2$ was approximately mean of parent. Mean of $F_1$ for 100-seed weight was 6.2g and 5.7g for Eunhakong/KLG10084 and Sohaegnamulkong/KLG10084, respectively, which were somewhat skewed distribution to small seeded parents. Mean seed yield of $F_2$ was about mean of two parents. Degree of vine was 6.4 and 5.7 in $F_1$ for two crosses but it was 6.0 in $F_2$ for Eonbakong/KLG10084, which revealed the degree of vine as partial dominance while 4.6 for Sobaegnamulkong/KLG10084, somewhat different results from the previous cross. Broad-sense heritability($h^2B$) for plant height, days to flowering, pods per plant, seed yield, and degree of vine was comparatively high and narrow-sense heritability($h^2B$) for 100-seed weight which is the moot important character in the development of small seed-size sprout soybean was 52.3% and 65.6% for Eunhakong/KLG10084 and Sohaegnamulkong/KLG10084, respectively, which indicated that selection for the character in early generation was possible.

  • PDF

QTL Mapping of Resistance to Gray Leaf Spot in Ryegrass: Consistency of QTL between Two Mapping Populations

  • Curley, J.;Chakraborty, N.;Chang, S.;Jung, G.
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.85-100
    • /
    • 2008
  • Gray leaf spot (GLS) is a serious fungal disease caused by Pyricularia oryzae Cavara, recently reported on the important turf and forage species, perennial ryegrass (Lolium perenneL.). This fungus also causes rice blast, which is usually controlled by host resistance, but durability of resistance is a problem. Few instances of GLS resistance have been reported in perennial ryegrass. However, two major QTL for GLS resistance have been detected on linkage groups 3 and 6 in an Italian x perennial ryegrass mapping population. To confirm that those QTL are still detectable in the next generation and can function in a different genetic background, a resistant segregant from this population has been crossed with an unrelated susceptible perennial clone, to form a new mapping population segregating for GLS resistance. QTL analysis has been performed in the new population, using two different ryegrass field isolates and RAPD, RFLP, and SSR marker-based linkage maps for each parent. Results indicate the previously identified QTL on linkage group 3 is still significant in the new population, with LOD and percent of phenotypic variance explained ranging from 2.0 to 3.5 and 5% to 10%, respectively. Also two QTL were detected in the susceptible parent, with similar LOD and phenotypic variance explained. Although the linkage group 6 QTL was not detected, the major QTL on linkage group 3 appears to beconfirmed. These results will add to our understanding of the genetic architecture of GLS resistance in ryegrass, which will facilitate its use in perennial ryegrass breeding programs.