• 제목/요약/키워드: Segmentation process

검색결과 635건 처리시간 0.037초

고해상도 360° 전방위 IP 카메라를 이용한 다중 번호판 인식 시스템 (Multi License Plate Recognition System using High Resolution 360° Omnidirectional IP Camera)

  • 라승탁;이선구;이승호
    • 전기전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.412-415
    • /
    • 2017
  • 본 논문에서는 고해상도 $360^{\circ}$ 전방위 IP 카메라를 이용한 다중 번호판 인식 시스템을 제안한다. 제안한 시스템은 $360^{\circ}$ 원형영상의 평면 분할 부와 다중 번호판 인식 부로 구성되었다. $360^{\circ}$ 원형영상의 평면 분할 부는 고해상도 $360^{\circ}$ 전방위 IP 카메라에서 원형영상 획득, 원형영상 분할, 평면영상으로 변환, 보간법을 사용한 픽셀 보정 및 컬러보정, 에지 보정 등의 과정을 거쳐 화질이 개선된 평면영상으로 출력한다. 다중 번호판 인식 부는 평면영상에서 다중 번호판 후보영역 추출, 다중 번호판 후보영역 정규화 및 복원, 신경망을 사용한 다중 번호판 숫자, 문자 인식 과정을 거쳐 다중 번호판을 인식하게 된다. 제안된 고해상도 $360^{\circ}$ 전방위 IP 카메라를 이용한 다중 번호판 인식 시스템을 평가하기 위하여 지능형 주차관제시스템 운영 전문 업체와 공동으로 실험한 결과, 97.8%의 높은 번호판 인식률이 확인되었다.

지표면 라이다 데이터를 고려한 건물 외곽선 결정 (Determination of Physical Footprints of Buildings with Consideration Terrain Surface LiDAR Data)

  • 유은진;이동천
    • 한국측량학회지
    • /
    • 제34권5호
    • /
    • pp.503-514
    • /
    • 2016
  • 객체 외곽선의 정확한 묘사는 수치지형도, 건물모델, 공간정보 데이터베이스와 같은 공간정보 성과물을 신뢰성 있게 제공하기 위해 중요하다. 라이다 데이터에서 건물의 실제 경계는 지붕에 있는 최외곽점들과 건물 주변의 지표면 상에 있는 점 사이에 존재한다. 그러므로 건물 지붕에 있는 점들 만으로 결정된 외곽선은 건물의 실제 경계와 일치하지 않는다. 본 논문은 라이다 데이터를 이용하여 건물의 실제 외곽선에 근접한 외곽선을 추정하는 것이 목적이며, 격자화 되지 않은 원래 데이터에서의 건물과 지표면 데이터로부터 최종 외곽선을 결정하였다. 최종 외곽선 결정방법은 두 영역 간의 해상 경계선 결정에 적용하는 방법과 유사하다. 제안한 방법은 분할된 데이터로부터 초기 외곽선을 결정하고, 지붕의 점들과 지표면 상의 점들을 이용한 외곽선을 추정하였다. 또한 점밀도가 극히 낮은 데이터에도 적용하여 제안한 방법의 신뢰성을 검증하였다. 시뮬레이션 및 실제 라이다 데이터를 이용하여 실험을 수행하여 타당성과 효용성을 검증하였지만, 향후 개선되고 향상될 부분이 있다고 사료된다.

UAV와 다시기 위성영상을 이용한 붕괴건물 탐지 (Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery)

  • 정세정;이기림;윤예린;이원희;한유경
    • 한국측량학회지
    • /
    • 제38권3호
    • /
    • pp.187-196
    • /
    • 2020
  • 본 연구에서는 UAV (Unmanned Aerial Vehicle)와 PlanetScope 위성영상을 함께 이용한 붕괴건물 탐지를 수행하여 지표면에 위치한 특정 객체 탐지에 있어 이종 센서의 활용 가능성을 제시하였다. 이를 위해 지난해 4월 산불 피해로 붕괴된 20여 채의 건물들이 있는 곳을 실험장소로 선정하였다. 붕괴건물 탐지를 위해 1차적으로 객체기반 분할을 수행한 고해상도의 UAV 영상을 이용해 ExG (Excess Green), GLCM (Gray-Level Co-occurrence Matrix) 그리고 DSM (Digital Surface Model)과 같은 객체들의 특징(feature) 정보를 생성한 후 이를 붕괴건물 후보군 탐지에 이용하였다. 이 과정에서 탐지정확도 향상을 위해 PlanetScope를 이용한 변화탐지 결과를 함께 사용하였으며 이를 시드 화소(seed pixles)로 사용하여 붕괴건물 후보군에서 오탐지된 영역과 과탐지된 영역을 수정 및 보완하였다. 최종적인 탐지 결과는 참조 영상을 통해 그 성능을 분석하였으며 UAV 영상만을 이용한 붕괴건물 후보군 탐지 결과와 UAV 그리고 PlanetScope 영상을 함께 사용했을 때의 결과의 정확도를 비교, 분석하였다. 그 결과 UAV 영상만을 이용해 탐지한 붕괴건물의 정확도는 0.4867 F1-score를 가지며 UAV와 PlanetScope 영상을 함께 사용했을 때의 결과는 0.8064 F1-score로 그 값이 상승하였다. Kappa 지수 또한 0.3674에서 0.8225로 향상된 것을 확인할 수 있었다.

체인 정합과 확장된 그룹핑 방법을 사용한 곡선형 텍스트 라인 추출 (Extracting curved text lines using the chain composition and the expanded grouping method)

  • ;윤진선;송영준;김남;김용기
    • 정보처리학회논문지B
    • /
    • 제14B권6호
    • /
    • pp.453-460
    • /
    • 2007
  • 본 논문은 정형화되지 않은 텍스트 라인들을 추출하기 위한 방법을 보여주고 있다. 텍스트 라인들은 각기 다른 각도로 구성되고, 심하게 굴곡이 있는 모양, 그리고 텍스트 라인내의 약간의 단어 사이의 공간이 생기게 된다. 그러한 텍스트 라인들은 포스터, 주소, 그리고 예술 문서 등에서 발견된다. 제안하는 방법은 기존의 직관적인 그룹핑 방법에 기반을 두고 있지만, 하나의 라인에서 발생하는 불충분한 특징점들과 모호한 회전 등을 극복하기 위한 방법을 개발하였다. 본 논문에서 텍스트 라인들은 몇 개의 연결된 성분들로 구성되고, 이 성분들은 하나의 문자 또는 연결된 문자들의 검은색 화소들의 집합이라고 가정하였다. 제안하는 방법은 반복적으로 증가되는 임계값과 가까운 성분들은 하나의 체인으로 병합하게 되고 확장되어 길어진 체인들은 라인의 원시 체인으로서 인지된다. 그때 원시 체인들은 텍스트 라인의 부분적 회전에 따라 좌우로 확장되어 진다. 텍스트 라인의 부분적인 회전은 원시 체인이 확장될 때, 체인들의 각 면에서 재구성될 것이다. 이러한 과정을 통해서 모든 텍스트 라인들이 구성되어 진다. 제안 방법은 로고와 슬로건에서 사용된 곡면으로 쓰여진 텍스트 라인들에 대해서 실험한 결과 직선 텍스트 라인은 98%, 곡선 텍스트 라인은 94%로서 높은 추출율을 보여주고 있다.

모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템 (Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model)

  • 음혁민;이희진;윤창용
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.471-476
    • /
    • 2016
  • 본 논문은 깊이 정보를 기반으로 모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용하여 연속적인 사람 행동들을 인식하는 시스템을 설명하고 연속적인 행동 인식 시스템에서 인식 성능을 개선하기 위해 행동 적출을 수행하는 적출 모델을 제안한다. 본 시스템의 구성은 전처리 과정, 사람 행동 및 적출 모델링 그리고 연속적인 사람 행동 인식으로 이루어져 있다. 전처리 과정에서는 영상 분할과 시공간 템플릿 기반의 특징을 추출하기 위하여 Depth-MHI-HOG 방법을 사용하였으며, 추출된 특징들은 사람 행동 및 적출 모델링 과정을 통해 시퀀스들로 생성된다. 이 생성된 시퀀스들과 은닉 마르코프 모델을 사용하여 정의된 각각의 행동에 적합한 사람 행동 모델과 제안된 적출 모델을 생성한다. 연속적인 사람 행동 인식은 연속적인 행동 시퀀스에서 적출 모델에 의해 의미 있는 행동과 의미 없는 행동을 분할하는 행동 적출과 의미 있는 행동 시퀀스에 대한 모델의 확률 값들을 비교하여 연속적으로 사람 행동들을 인식한다. 실험 결과를 통해 제안된 모델이 연속적인 행동 인식 시스템에서 인식 성능을 효과적으로 개선하는 것을 검증한다.

주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘 (Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety)

  • 심승보;정재진
    • 한국ITS학회 논문지
    • /
    • 제20권2호
    • /
    • pp.95-111
    • /
    • 2021
  • 인구의 감소 및 고령화 사회가 진행되면서 운전자의 평균 연령은 높아지게 된다. 그에 따라 잠재적인 사고의 위험성이 높은 고령 운전자들은 자율 주행형 개인 이동체가 필요하게 된다. 이러한 이동체가 도로 주행 중에 안전성을 확보하기 위하여 여러 장애물에 대응할 기술이 요구된다. 그 중에서도 주행 중에 마주할 수 있는 차량, 자전거, 사람과 같은 동적 장애물뿐만 아니라 도로 노면의 불량 상태와 같은 정적 장애물을 인식하는 기술이 가장 우선적으로 필요하다. 이를 위해서 본 논문에서는 두 종류의 장애물을 동시에 탐지할 수 있는 심층 신경망 알고리즘을 제안했다. 이 알고리즘을 개발하기 위해서 1,418장의 영상을 이용하여 7종의 동적 장애물에 표기한 annotation data와 도로 노면 파손을 표시한 label 영상을 확보했다. 이를 이용하여 학습한 결과, 46.22%의 평균 정확도로 동적 장애물을 탐지하고 74.71%의 mean intersection over union으로 도로 노면 파손을 탐지했다. 또한 한 장의 영상을 처리하는데 평균 소요시간은 89ms로 일반 차량보다 느린 개인 이동 차량에 사용하기 적합한 알고리즘을 개발했다. 향후 주행 중 마주할 있는 도로 장애물을 탐지하는 기술을 활용하여 개인 이동 차량의 주행 안전성이 향상되길 기대한다.

마우스 뇌의 구조적 연결성 분석을 위한 분석 방법 (Analytical Methods for the Analysis of Structural Connectivity in the Mouse Brain)

  • 임상진;백현만
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.507-518
    • /
    • 2021
  • 자기공명영상(MRI)은 뇌의 구조적 및 기능적 연구에서 핵심 기술로 필요성이 증가하고 있다. Tractography 분석을 이용하는 뇌지도(Connectome)는 MRI를 통해 뇌의 구조적 연결성을 확인하고 연결성의 변동성을 이용해 질병 병리학에 대한 이해를 높이는 방법으로 인간을 대상으로 활발한 연구가 진행되고 있다. 하지만 마우스 같은 작은 동물의 경우 분석 방법의 표준화가 부족하고 영상에 대한 정확한 전처리 전략 및 아틀라스 기반 신경 정보학에 대한 과학적 합의가 없다. 또한, 인간의 뇌에 비해 마우스의 뇌는 매우 작기 때문에 높은 해상도를 갖는 영상을 획득하는 것에도 어려움이 있다. 연구에서는 구조적 영상과 확산 텐서 영상을 이용해 구조 영역 세분화를 포함한 구조적 연결성 분석을 가능하게 하고 마우스 뇌 데이터를 처리하는 Allen Mouse Brain Atlas 기반 영상 데이터 분석 파이프라인을 제시한다. 각 분석 방법은 마우스 뇌 영상 데이터의 분석을 가능하게 하고 이미 인간 영상데이터로 검증된 소프트웨어를 이용해 신뢰성을 가질 수 있게 하였다. 또한, 연구에서 제시되는 파이프라인은 복잡한 분석 과정과 다양한 기능들 중 마우스 Tractography에 필요한 기능들을 정리하여 사용자가 효율적으로 데이터 처리를 하는데 최적화되었다.

소셜미디어를 이용한 기록관리기관의 기록서비스 혁신 방안 연구: 경남기록원과 서울기록원을 중심으로 (A Study on Innovation Plan of Archives' Recording Service using Social Media: Focused on Gyeongnam Archives and Seoul Metropolitan Archives)

  • 김예지;김익한
    • 한국기록관리학회지
    • /
    • 제22권2호
    • /
    • pp.1-25
    • /
    • 2022
  • 오늘날 대부분의 아카이브가 소셜미디어를 통한 기록서비스를 제공하고 있지만, 효과는 매우 저조하다. 본 연구는 영구기록물관리기관이자 광역지방자치단체 지방기록물관리기관인 경남기록원과 서울기록원을 중심으로 소셜미디어 기록서비스가 미진한 원인을 분석하여 개선방안을 제시하고, 고전적인 기록서비스와 소셜미디어가 상호 성장하여 시너지효과를 일으킬 수 있는 방안의 설계를 목적으로 하였다. 문헌연구를 통해 소셜미디어별 특성과 메커니즘을 파악하였으며, 현황 분석을 통해 경남기록원과 서울기록원의 소셜미디어 운영 실태를 파악하고, 내부 문건을 검토하여 공통적인 문제점을 도출했다. 보다 상세한 분석을 위해 기관 기록서비스 담당자와 인터뷰를 진행했으며, 국내 유관기관과 해외 아카이브의 소셜미디어 운영 사례를 분석하여 아카이브에 적용할 수 있는 방안을 검토했다. 이를 바탕으로 새로운 기록서비스 프로세스를 구축하고, 소셜미디어별 전략적 운영 방안을 제안함과 동시에 기존의 기록서비스와 상호성장 할 수 있는 방안을 설계하였다.

인도네시아 할랄식품 소비자의 인삼·홍삼제품에 대한 인식과 태도 및 이용 실태 (Indonesian Halal Food Consumers' Perception, Attitude and Use of Ginseng and Red Ginseng Products)

  • 박수진
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권11호
    • /
    • pp.1-15
    • /
    • 2017
  • 수출전략형 할랄식품 개발에 있어서 소비자의 니즈분석과 소비성향 파악은 시장진출의 필수적인 과정이다. 본 연구는 인도네시아 무슬림 소비자의 인삼 및 홍삼제품에 대한 인식과 태도 및 이용실태를 조사하였다. 온라인 시스템을 이용한 웹 기반 설문조사방법으로 인도네시아에 거주하는 성인 남녀 무슬림 소비자 200명을 대상으로 인삼·홍삼제품에 대한 인지도, 섭취경험, 선호 및 비선호요인, 효능인식수준, 구매현황과 구매한 제품에 대한 만족도와 재구매 의사 등을 조사하였다. 연구결과 인도네시아 무슬림 소비자의 인삼·홍삼제품 인지도는 각각 58%, 51%정도로 나타났다. 특히, 남자, 20-30대, 소득이 중·상인 소비자에서 인삼·홍삼제품에 대한 인지도가 상대적으로 높았다. 인도네시아 무슬림 소비자가 인삼·홍삼제품을 섭취하는 이유는 건강증진, 기분전환, 질병예방의 순이었으며, 섭취경험이 있는 소비자는 인삼·홍삼제품의 효능에 대한 인식도가 매우 높았다. 특히, 20-30대는 40-50대 대비 건강증진, 기분전환, 주위권유 등의 이유로 인삼이나 홍삼제품을 섭취하며, 인터넷을 통하여, 면역력 증진, 피로개선, 남자 정력증강에 대한 효능을 알고 있었다. 인도네시아 무슬림 소비자의 인삼이나 홍삼 제품에 대한 만족도는 건강증진, 맛과 향, 포장규격과 디자인 순으로 높았으나 가격, 상품종류의 다양성은 개선할 부분으로 나타났다. 더욱이 지인 추천의향과 지속구입의향은 모두 높은 편으로 나타나 향후 할랄인증 인삼·홍삼제품 소비자의 세분화와 니즈분석을 통한 전략적인 제품개발이 필요하다고 판단된다.

Sentinel-1 SAR 영상을 활용한 국내 내륙 수체 학습 데이터셋 구축 및 알고리즘 적용 연구 (A Study of Development and Application of an Inland Water Body Training Dataset Using Sentinel-1 SAR Images in Korea)

  • 이어루;정형섭
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1371-1388
    • /
    • 2023
  • 지구온난화로 인해 촉발된 기후변화가 홍수와 같은 수재해의 빈도와 규모를 증가시키며 국내 또한 장마와 집중호우로 인한 수재해가 증가하는 추세를 보인다. 이에 광범위한 수재해에 대해 효과적인 대응 및 기후 변화에 따른 선제적 대처가 필수적이며 이는 위성레이더 영상을 통해 가능하다. 본 연구에서는 Sentinel-1 위성 레이더 영상으로부터 국내 수체의 특성을 반영하기 위해 한강권역과 낙동강 권역의 일부 수체 영역에 대해 수체 학습 데이터셋 1,423장을 구축하였다. 정밀한 데이터 어노테이션(Annotation)을 위해 다양한 상황에 따른 구축 기준 문서를 작성한 뒤 진행하였다. 구축이 완료된 데이터셋을 딥러닝 모델 중 U-Net에 적용하여 수체 탐지 결과를 분석하였다. 최종적으로 학습된 모델을 학습과에 활용되지 않은 수체 영역에 적용하여 결과를 분석함으로써 전 국토 수체 모니터링의 가능성을 확인하였다. 분석 결과 구축된 수체 영역의 대해서는 F1-Score 0.987, Intersection over Union (IoU) 0.955의 높은 정확도로 수체를 탐지할 수 있었으며, 학습 및 평가에 활용되지 않은 다른 국내 수체 영역에 대해서도 동일하게 F1-Score 0.941, IoU 0.89의 높은 수체 탐지 결과를 나타냈다. 두 결과 모두 전반적으로 일부 그림자 영역과 폭이 좁은 하천에서 오류가 관찰되었으나, 그 외에는 정밀하게 수체를 탐지하였다. 이러한 연구 결과는 수재해 피해 규모 및 수자원 변화 모니터링에 중요한 기여를 할 것으로 기대된다. 추후 연구에서는 보다 다양한 수체 특성을 가진 데이터셋을 추가 구축한다면 오분류한 영역을 개선할 수 있을 것으로 기대되며, 전 국토의 수체를 효율적으로 관리 및 모니터링하는데 활용될 것으로 사료된다.