본 논문에서는 고해상도 $360^{\circ}$ 전방위 IP 카메라를 이용한 다중 번호판 인식 시스템을 제안한다. 제안한 시스템은 $360^{\circ}$ 원형영상의 평면 분할 부와 다중 번호판 인식 부로 구성되었다. $360^{\circ}$ 원형영상의 평면 분할 부는 고해상도 $360^{\circ}$ 전방위 IP 카메라에서 원형영상 획득, 원형영상 분할, 평면영상으로 변환, 보간법을 사용한 픽셀 보정 및 컬러보정, 에지 보정 등의 과정을 거쳐 화질이 개선된 평면영상으로 출력한다. 다중 번호판 인식 부는 평면영상에서 다중 번호판 후보영역 추출, 다중 번호판 후보영역 정규화 및 복원, 신경망을 사용한 다중 번호판 숫자, 문자 인식 과정을 거쳐 다중 번호판을 인식하게 된다. 제안된 고해상도 $360^{\circ}$ 전방위 IP 카메라를 이용한 다중 번호판 인식 시스템을 평가하기 위하여 지능형 주차관제시스템 운영 전문 업체와 공동으로 실험한 결과, 97.8%의 높은 번호판 인식률이 확인되었다.
객체 외곽선의 정확한 묘사는 수치지형도, 건물모델, 공간정보 데이터베이스와 같은 공간정보 성과물을 신뢰성 있게 제공하기 위해 중요하다. 라이다 데이터에서 건물의 실제 경계는 지붕에 있는 최외곽점들과 건물 주변의 지표면 상에 있는 점 사이에 존재한다. 그러므로 건물 지붕에 있는 점들 만으로 결정된 외곽선은 건물의 실제 경계와 일치하지 않는다. 본 논문은 라이다 데이터를 이용하여 건물의 실제 외곽선에 근접한 외곽선을 추정하는 것이 목적이며, 격자화 되지 않은 원래 데이터에서의 건물과 지표면 데이터로부터 최종 외곽선을 결정하였다. 최종 외곽선 결정방법은 두 영역 간의 해상 경계선 결정에 적용하는 방법과 유사하다. 제안한 방법은 분할된 데이터로부터 초기 외곽선을 결정하고, 지붕의 점들과 지표면 상의 점들을 이용한 외곽선을 추정하였다. 또한 점밀도가 극히 낮은 데이터에도 적용하여 제안한 방법의 신뢰성을 검증하였다. 시뮬레이션 및 실제 라이다 데이터를 이용하여 실험을 수행하여 타당성과 효용성을 검증하였지만, 향후 개선되고 향상될 부분이 있다고 사료된다.
본 연구에서는 UAV (Unmanned Aerial Vehicle)와 PlanetScope 위성영상을 함께 이용한 붕괴건물 탐지를 수행하여 지표면에 위치한 특정 객체 탐지에 있어 이종 센서의 활용 가능성을 제시하였다. 이를 위해 지난해 4월 산불 피해로 붕괴된 20여 채의 건물들이 있는 곳을 실험장소로 선정하였다. 붕괴건물 탐지를 위해 1차적으로 객체기반 분할을 수행한 고해상도의 UAV 영상을 이용해 ExG (Excess Green), GLCM (Gray-Level Co-occurrence Matrix) 그리고 DSM (Digital Surface Model)과 같은 객체들의 특징(feature) 정보를 생성한 후 이를 붕괴건물 후보군 탐지에 이용하였다. 이 과정에서 탐지정확도 향상을 위해 PlanetScope를 이용한 변화탐지 결과를 함께 사용하였으며 이를 시드 화소(seed pixles)로 사용하여 붕괴건물 후보군에서 오탐지된 영역과 과탐지된 영역을 수정 및 보완하였다. 최종적인 탐지 결과는 참조 영상을 통해 그 성능을 분석하였으며 UAV 영상만을 이용한 붕괴건물 후보군 탐지 결과와 UAV 그리고 PlanetScope 영상을 함께 사용했을 때의 결과의 정확도를 비교, 분석하였다. 그 결과 UAV 영상만을 이용해 탐지한 붕괴건물의 정확도는 0.4867 F1-score를 가지며 UAV와 PlanetScope 영상을 함께 사용했을 때의 결과는 0.8064 F1-score로 그 값이 상승하였다. Kappa 지수 또한 0.3674에서 0.8225로 향상된 것을 확인할 수 있었다.
본 논문은 정형화되지 않은 텍스트 라인들을 추출하기 위한 방법을 보여주고 있다. 텍스트 라인들은 각기 다른 각도로 구성되고, 심하게 굴곡이 있는 모양, 그리고 텍스트 라인내의 약간의 단어 사이의 공간이 생기게 된다. 그러한 텍스트 라인들은 포스터, 주소, 그리고 예술 문서 등에서 발견된다. 제안하는 방법은 기존의 직관적인 그룹핑 방법에 기반을 두고 있지만, 하나의 라인에서 발생하는 불충분한 특징점들과 모호한 회전 등을 극복하기 위한 방법을 개발하였다. 본 논문에서 텍스트 라인들은 몇 개의 연결된 성분들로 구성되고, 이 성분들은 하나의 문자 또는 연결된 문자들의 검은색 화소들의 집합이라고 가정하였다. 제안하는 방법은 반복적으로 증가되는 임계값과 가까운 성분들은 하나의 체인으로 병합하게 되고 확장되어 길어진 체인들은 라인의 원시 체인으로서 인지된다. 그때 원시 체인들은 텍스트 라인의 부분적 회전에 따라 좌우로 확장되어 진다. 텍스트 라인의 부분적인 회전은 원시 체인이 확장될 때, 체인들의 각 면에서 재구성될 것이다. 이러한 과정을 통해서 모든 텍스트 라인들이 구성되어 진다. 제안 방법은 로고와 슬로건에서 사용된 곡면으로 쓰여진 텍스트 라인들에 대해서 실험한 결과 직선 텍스트 라인은 98%, 곡선 텍스트 라인은 94%로서 높은 추출율을 보여주고 있다.
본 논문은 깊이 정보를 기반으로 모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용하여 연속적인 사람 행동들을 인식하는 시스템을 설명하고 연속적인 행동 인식 시스템에서 인식 성능을 개선하기 위해 행동 적출을 수행하는 적출 모델을 제안한다. 본 시스템의 구성은 전처리 과정, 사람 행동 및 적출 모델링 그리고 연속적인 사람 행동 인식으로 이루어져 있다. 전처리 과정에서는 영상 분할과 시공간 템플릿 기반의 특징을 추출하기 위하여 Depth-MHI-HOG 방법을 사용하였으며, 추출된 특징들은 사람 행동 및 적출 모델링 과정을 통해 시퀀스들로 생성된다. 이 생성된 시퀀스들과 은닉 마르코프 모델을 사용하여 정의된 각각의 행동에 적합한 사람 행동 모델과 제안된 적출 모델을 생성한다. 연속적인 사람 행동 인식은 연속적인 행동 시퀀스에서 적출 모델에 의해 의미 있는 행동과 의미 없는 행동을 분할하는 행동 적출과 의미 있는 행동 시퀀스에 대한 모델의 확률 값들을 비교하여 연속적으로 사람 행동들을 인식한다. 실험 결과를 통해 제안된 모델이 연속적인 행동 인식 시스템에서 인식 성능을 효과적으로 개선하는 것을 검증한다.
인구의 감소 및 고령화 사회가 진행되면서 운전자의 평균 연령은 높아지게 된다. 그에 따라 잠재적인 사고의 위험성이 높은 고령 운전자들은 자율 주행형 개인 이동체가 필요하게 된다. 이러한 이동체가 도로 주행 중에 안전성을 확보하기 위하여 여러 장애물에 대응할 기술이 요구된다. 그 중에서도 주행 중에 마주할 수 있는 차량, 자전거, 사람과 같은 동적 장애물뿐만 아니라 도로 노면의 불량 상태와 같은 정적 장애물을 인식하는 기술이 가장 우선적으로 필요하다. 이를 위해서 본 논문에서는 두 종류의 장애물을 동시에 탐지할 수 있는 심층 신경망 알고리즘을 제안했다. 이 알고리즘을 개발하기 위해서 1,418장의 영상을 이용하여 7종의 동적 장애물에 표기한 annotation data와 도로 노면 파손을 표시한 label 영상을 확보했다. 이를 이용하여 학습한 결과, 46.22%의 평균 정확도로 동적 장애물을 탐지하고 74.71%의 mean intersection over union으로 도로 노면 파손을 탐지했다. 또한 한 장의 영상을 처리하는데 평균 소요시간은 89ms로 일반 차량보다 느린 개인 이동 차량에 사용하기 적합한 알고리즘을 개발했다. 향후 주행 중 마주할 있는 도로 장애물을 탐지하는 기술을 활용하여 개인 이동 차량의 주행 안전성이 향상되길 기대한다.
자기공명영상(MRI)은 뇌의 구조적 및 기능적 연구에서 핵심 기술로 필요성이 증가하고 있다. Tractography 분석을 이용하는 뇌지도(Connectome)는 MRI를 통해 뇌의 구조적 연결성을 확인하고 연결성의 변동성을 이용해 질병 병리학에 대한 이해를 높이는 방법으로 인간을 대상으로 활발한 연구가 진행되고 있다. 하지만 마우스 같은 작은 동물의 경우 분석 방법의 표준화가 부족하고 영상에 대한 정확한 전처리 전략 및 아틀라스 기반 신경 정보학에 대한 과학적 합의가 없다. 또한, 인간의 뇌에 비해 마우스의 뇌는 매우 작기 때문에 높은 해상도를 갖는 영상을 획득하는 것에도 어려움이 있다. 연구에서는 구조적 영상과 확산 텐서 영상을 이용해 구조 영역 세분화를 포함한 구조적 연결성 분석을 가능하게 하고 마우스 뇌 데이터를 처리하는 Allen Mouse Brain Atlas 기반 영상 데이터 분석 파이프라인을 제시한다. 각 분석 방법은 마우스 뇌 영상 데이터의 분석을 가능하게 하고 이미 인간 영상데이터로 검증된 소프트웨어를 이용해 신뢰성을 가질 수 있게 하였다. 또한, 연구에서 제시되는 파이프라인은 복잡한 분석 과정과 다양한 기능들 중 마우스 Tractography에 필요한 기능들을 정리하여 사용자가 효율적으로 데이터 처리를 하는데 최적화되었다.
오늘날 대부분의 아카이브가 소셜미디어를 통한 기록서비스를 제공하고 있지만, 효과는 매우 저조하다. 본 연구는 영구기록물관리기관이자 광역지방자치단체 지방기록물관리기관인 경남기록원과 서울기록원을 중심으로 소셜미디어 기록서비스가 미진한 원인을 분석하여 개선방안을 제시하고, 고전적인 기록서비스와 소셜미디어가 상호 성장하여 시너지효과를 일으킬 수 있는 방안의 설계를 목적으로 하였다. 문헌연구를 통해 소셜미디어별 특성과 메커니즘을 파악하였으며, 현황 분석을 통해 경남기록원과 서울기록원의 소셜미디어 운영 실태를 파악하고, 내부 문건을 검토하여 공통적인 문제점을 도출했다. 보다 상세한 분석을 위해 기관 기록서비스 담당자와 인터뷰를 진행했으며, 국내 유관기관과 해외 아카이브의 소셜미디어 운영 사례를 분석하여 아카이브에 적용할 수 있는 방안을 검토했다. 이를 바탕으로 새로운 기록서비스 프로세스를 구축하고, 소셜미디어별 전략적 운영 방안을 제안함과 동시에 기존의 기록서비스와 상호성장 할 수 있는 방안을 설계하였다.
수출전략형 할랄식품 개발에 있어서 소비자의 니즈분석과 소비성향 파악은 시장진출의 필수적인 과정이다. 본 연구는 인도네시아 무슬림 소비자의 인삼 및 홍삼제품에 대한 인식과 태도 및 이용실태를 조사하였다. 온라인 시스템을 이용한 웹 기반 설문조사방법으로 인도네시아에 거주하는 성인 남녀 무슬림 소비자 200명을 대상으로 인삼·홍삼제품에 대한 인지도, 섭취경험, 선호 및 비선호요인, 효능인식수준, 구매현황과 구매한 제품에 대한 만족도와 재구매 의사 등을 조사하였다. 연구결과 인도네시아 무슬림 소비자의 인삼·홍삼제품 인지도는 각각 58%, 51%정도로 나타났다. 특히, 남자, 20-30대, 소득이 중·상인 소비자에서 인삼·홍삼제품에 대한 인지도가 상대적으로 높았다. 인도네시아 무슬림 소비자가 인삼·홍삼제품을 섭취하는 이유는 건강증진, 기분전환, 질병예방의 순이었으며, 섭취경험이 있는 소비자는 인삼·홍삼제품의 효능에 대한 인식도가 매우 높았다. 특히, 20-30대는 40-50대 대비 건강증진, 기분전환, 주위권유 등의 이유로 인삼이나 홍삼제품을 섭취하며, 인터넷을 통하여, 면역력 증진, 피로개선, 남자 정력증강에 대한 효능을 알고 있었다. 인도네시아 무슬림 소비자의 인삼이나 홍삼 제품에 대한 만족도는 건강증진, 맛과 향, 포장규격과 디자인 순으로 높았으나 가격, 상품종류의 다양성은 개선할 부분으로 나타났다. 더욱이 지인 추천의향과 지속구입의향은 모두 높은 편으로 나타나 향후 할랄인증 인삼·홍삼제품 소비자의 세분화와 니즈분석을 통한 전략적인 제품개발이 필요하다고 판단된다.
지구온난화로 인해 촉발된 기후변화가 홍수와 같은 수재해의 빈도와 규모를 증가시키며 국내 또한 장마와 집중호우로 인한 수재해가 증가하는 추세를 보인다. 이에 광범위한 수재해에 대해 효과적인 대응 및 기후 변화에 따른 선제적 대처가 필수적이며 이는 위성레이더 영상을 통해 가능하다. 본 연구에서는 Sentinel-1 위성 레이더 영상으로부터 국내 수체의 특성을 반영하기 위해 한강권역과 낙동강 권역의 일부 수체 영역에 대해 수체 학습 데이터셋 1,423장을 구축하였다. 정밀한 데이터 어노테이션(Annotation)을 위해 다양한 상황에 따른 구축 기준 문서를 작성한 뒤 진행하였다. 구축이 완료된 데이터셋을 딥러닝 모델 중 U-Net에 적용하여 수체 탐지 결과를 분석하였다. 최종적으로 학습된 모델을 학습과에 활용되지 않은 수체 영역에 적용하여 결과를 분석함으로써 전 국토 수체 모니터링의 가능성을 확인하였다. 분석 결과 구축된 수체 영역의 대해서는 F1-Score 0.987, Intersection over Union (IoU) 0.955의 높은 정확도로 수체를 탐지할 수 있었으며, 학습 및 평가에 활용되지 않은 다른 국내 수체 영역에 대해서도 동일하게 F1-Score 0.941, IoU 0.89의 높은 수체 탐지 결과를 나타냈다. 두 결과 모두 전반적으로 일부 그림자 영역과 폭이 좁은 하천에서 오류가 관찰되었으나, 그 외에는 정밀하게 수체를 탐지하였다. 이러한 연구 결과는 수재해 피해 규모 및 수자원 변화 모니터링에 중요한 기여를 할 것으로 기대된다. 추후 연구에서는 보다 다양한 수체 특성을 가진 데이터셋을 추가 구축한다면 오분류한 영역을 개선할 수 있을 것으로 기대되며, 전 국토의 수체를 효율적으로 관리 및 모니터링하는데 활용될 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.