• Title/Summary/Keyword: Segmentation process

Search Result 635, Processing Time 0.027 seconds

Iterative SAR Segmentation by Fuzzy Hit-or-Miss and Homogeneity Index

  • Intajag Sathit;Chitwong Sakreya;Tipsuwanporn Vittaya
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.111-114
    • /
    • 2004
  • Object-based segmentation is the first essential step for image processing applications. Recently, SAR (Synthetic Aperture Radar) segmentation techniques have been developed, however not enough to preserve the significant information contained in the small regions of the images. The proposed method is to partition an SAR image into homogeneous regions by using a fuzzy hit-or-miss operator with an inherent spatial transformation, which endows to preserve the small regions. In our algorithm, an iterative segmentation technique is formulated as a consequential process. Then, each time in iterating, hypothesis testing is used to evaluate the quality of the segmented regions with a homogeneity index. The segmentation algorithm is unsupervised and employed few parameters, most of which can be calculated from the input data. This comparative study indicates that the new iterative segmentation algorithm provides acceptable results as seen in the tested examples of satellite images.

  • PDF

AUTOMATIC IMAGE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING DATA BY COMBINING REGION AND EDGE INFORMATION

  • Byun, Young-Gi;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.72-75
    • /
    • 2008
  • Image segmentation techniques becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Seeded Region Growing (SRG) and Edge Information. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying SRG. Finally the region merging process, using region adjacency graph (RAG), was carried out to get the final segmentation result. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

  • PDF

A Deep Learning-Based Image Semantic Segmentation Algorithm

  • Chaoqun, Shen;Zhongliang, Sun
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.98-108
    • /
    • 2023
  • This paper is an attempt to design segmentation method based on fully convolutional networks (FCN) and attention mechanism. The first five layers of the Visual Geometry Group (VGG) 16 network serve as the coding part in the semantic segmentation network structure with the convolutional layer used to replace pooling to reduce loss of image feature extraction information. The up-sampling and deconvolution unit of the FCN is then used as the decoding part in the semantic segmentation network. In the deconvolution process, the skip structure is used to fuse different levels of information and the attention mechanism is incorporated to reduce accuracy loss. Finally, the segmentation results are obtained through pixel layer classification. The results show that our method outperforms the comparison methods in mean pixel accuracy (MPA) and mean intersection over union (MIOU).

Morphological Operations to Segment a Tumor from a Magnetic Resonance Image

  • Thapaliya, Kiran;Kwon, Goo-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2014
  • This paper describes an efficient framework for the extraction of a brain tumor from magnetic resonance (MR) images. Before the segmentation process, a median filter is used to filter the image. Then, the morphological gradient is computed and added to the filtered image for intensity enhancement. After the enhancement process, the thresholding value is calculated using the mean and the standard deviation of the image. This thresholding value is used to binarize the image followed by the morphological operations. Moreover, the combination of these morphological operations allows to compute the local thresholding image supported by a flood-fill algorithm and a pixel replacement process to extract the tumor from the brain. Thus, this framework provides a new source of evidence in the field of segmentation that the specialist can aggregate with the segmentation results in order to soften his/her own decision.

Bayesian Changepoints Detection for the Power Law Process with Binary Segmentation Procedures

  • Kim Hyunsoo;Kim Seong W.;Jang Hakjin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.483-496
    • /
    • 2005
  • We consider the power law process which is assumed to have multiple changepoints. We propose a binary segmentation procedure for locating all existing changepoints. We select one model between the no-changepoints model and the single changepoint model by the Bayes factor. We repeat this procedure until no more changepoints are found. Then we carry out a multiple test based on the Bayes factor through the intrinsic priors of Berger and Pericchi (1996) to investigate the system behaviour of failure times. We demonstrate our procedure with a real dataset and some simulated datasets.

Interactive drawing with user's intentions using image segmentation

  • Lim, Sooyeon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.73-80
    • /
    • 2018
  • This study introduces an interactive drawing system, a tool that allows user to sketch and draw with his own intentions. The proposed system enables the user to express more creatively through a tool that allows the user to reproduce his original idea as a drawing and transform it using his body. The user can actively participate in the production of the artwork by studying the unique formative language of the spectator. In addition, the user is given an opportunity to experience a creative process by transforming arbitrary drawing into various shapes according to his gestures. Interactive drawing systems use the segmentation of the drawing image as a way to extend the user's initial drawing idea. The system includes transforming a two-dimensional drawing into a volume-like form such as a three-dimensional drawing using image segmentation. In this process, a psychological space is created that can stimulate the imagination of the user and project the object of desire. This process of drawing personification plays a role of giving the user familiarity with the artwork and indirectly expressing his her emotions to others. This means that the interactive drawing, which has changed to the emotional concept of interaction beyond the concept of information transfer, can create a cooperative sensation image between user's time and space and occupy an important position in multimedia society.

Design and Implementation of Virtual Network Search System for Segmentation of Unconstrained Handwritten Hangul (무제약 필기체 한글 분할을 위한 가상 네트워크 탐색 시스템의 설계 및 구현)

  • Park Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.651-659
    • /
    • 2005
  • For segmentation of constrained and handwritten Hangul, a new method, which has been not introduced, was proposed and implemented to use virtual network search system in the space between characters. The proposed system was designed to be used in all cases in unconstrained handwritten Hangul by various writers and to make a number of curved segmentation path using a virtual network to the space between characters. The proposed system prevented Process from generating a path in a wrong position by changing search window upon target block within a search process. From the experimental results, the proposed virtual network search system showed segmentation accuracy of $91.4\%$ from 800 word set including touched and overlapped characters collected from various writers.

  • PDF

A Level Set Method to Image Segmentation Based on Local Direction Gradient

  • Peng, Yanjun;Ma, Yingran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1760-1778
    • /
    • 2018
  • For image segmentation with intensity inhomogeneity, many region-based level set methods have been proposed. Some of them however can't get the relatively ideal segmentation results under the severe intensity inhomogeneity and weak edges, and without use of the image gradient information. To improve that, we propose a new level set method combined with local direction gradient in this paper. Firstly, based on two assumptions on intensity inhomogeneity to images, the relationships between segmentation objects and image gradients to local minimum and maximum around a pixel are presented, from which a new pixel classification method based on weight of Euclidian distance is introduced. Secondly, to implement the model, variational level set method combined with image spatial neighborhood information is used, which enhances the anti-noise capacity of the proposed gradient information based model. Thirdly, a new diffusion process with an edge indicator function is incorporated into the level set function to classify the pixels in homogeneous regions of the same segmentation object, and also to make the proposed method more insensitive to initial contours and stable numerical implementation. To verify our proposed method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

Image Segmentation Using A Combined Segmentation Measure for Region-Based Coding (영역 기반 부호화를 위한 결합 분할 척도를 이용한 영상 분할)

  • Song, Kun-Woen;Kim, Kyeong-Man;Min, Gak;Lee, Chae-Soo;Nam, Jae-Yeal;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.518-528
    • /
    • 2001
  • In this paper, we firstly define a new combined segmentation measure and propose a segmentation algorithm using this measure. The combined segmentation measure is a weighted sum of intensity, motion, and a change segmentation measure that is extracted from the resulting image of the proposed change detector. The change segmentation measure is defined as an absolute change value difference between an pixel and its neighboring region from the eroded image, which results from morphological erosion filtering to eliminate many inaccurate components included in the resulting image of a conventional change detector. The change segmentation measure can be used as an efficient segmentation measure for the accurate segmentation of neighboring moving objects and static background regions. Therefore, the proposed combined segmentation measure can determine exact boundaries in the segmentation process of region-based coding even though the estimated motion vectors around the boundaries of moving objects and static background regions are inaccurate and the intensities around the boundaries are similar.

  • PDF