• Title/Summary/Keyword: Segmentation process

Search Result 635, Processing Time 0.031 seconds

A case study on balanced customer segmentation (균형적 고객세분화에 관한 사례연구)

  • Yoon Jong-Wook;Yoon Jong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.303-317
    • /
    • 2006
  • The process of segmenting customers in CRM should take into equal consideration both the companies' and customers' expected value. However, most of the current studies on customer segmentation have focused only on the companies view in terms of profitability. This study focuses on clarifying a problem and proposing a modified view in the customer segmentation step. The authors offer a proposition which is beneficial to both customers and companies, and thus makes the segmentation step more balanced. There is a two-pronged focus on customer segmentation in this study: first, this paper proposes a balanced view considering not only companies' expected value, but also that of the customers'. Secondly, such balanced segmentation will give a more accurate definition of loyal customers for a given company. This new approach can be expected to improve the level of satisfaction and the length of customer retention, and to increase effectiveness in corporate resource allocation for customer target marketing, as well as improve company insight into customer needs and preferences.

  • PDF

High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing (시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.421-430
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

Object-Based Integral Imaging Depth Extraction Using Segmentation (영상 분할을 이용한 객체 기반 집적영상 깊이 추출)

  • Kang, Jin-Mo;Jung, Jae-Hyun;Lee, Byoung-Ho;Park, Jae-Hyeung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2009
  • A novel method for the reconstruction of 3D shape and texture from elemental images has been proposed. Using this method, we can estimate a full 3D polygonal model of objects with seamless triangulation. But in the triangulation process, all the objects are stitched. This generates phantom surfaces that bridge depth discontinuities between different objects. To solve this problem we need to connect points only within a single object. We adopt a segmentation process to this end. The entire process of the proposed method is as follows. First, the central pixel of each elemental image is computed to extract spatial position of objects by correspondence analysis. Second, the object points of central pixels from neighboring elemental images are projected onto a specific elemental image. Then, the center sub-image is segmented and each object is labeled. We used the normalized cut algorithm for segmentation of the center sub-image. To enhance the speed of segmentation we applied the watershed algorithm before the normalized cut. Using the segmentation results, the subdivision process is applied to pixels only within the same objects. The refined grid is filtered with median and Gaussian filters to improve reconstruction quality. Finally, each vertex is connected and an object-based triangular mesh is formed. We conducted experiments using real objects and verified our proposed method.

Color Image Segmentation Using Anisotropic Diffusion and Agglomerative Hierarchical Clustering (비등방형 확산과 계층적 클러스터링을 이용한 칼라 영상분할)

  • 김대희;안충현;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.377-380
    • /
    • 2003
  • A new color image segmentation scheme is presented in this paper. The proposed algorithm consists of image simplification, region labeling and color clustering. The vector-valued diffusion process is performed in the perceptually uniform LUV color space. We present a discrete 3-D diffusion model for easy implementation. The statistical characteristics of each labeled region are employed to estimate the number of total clusters and agglomerative hierarchical clustering is performed with the estimated number of clusters. Since the proposed clustering algorithm counts each region as a unit, it does not generate oversegmentation along region boundaries.

  • PDF

Region-Segmental Scheme in Local Normalization Process of Digital Image (디지털영상 국부정규화처리의 영역분할 구도)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.78-85
    • /
    • 2007
  • This paper presents a segmental scheme for regions-composed images in local normalization process. The scheme is based on local statistics computed through a moving window. The normalization algorithm uses linear or nonlinear functions to transfer the pixel distribution and the homogeneous affine of regions which is corrupted by additive noise. It adjusts the mean and standard deviation for nearest-neighbor interpoint distance between current and the normalized image signals and changes the segmentation performance according to local statistics and parameter variation adaptively. The performance of newly advanced local normalization algorithm is evaluated and compared to the performance of conventional normalization methods. Experimental results are presented to show the region segmentation properties of these approaches.

Low-complexity patch projection method for efficient and lightweight point-cloud compression

  • Sungryeul Rhyu;Junsik Kim;Gwang Hoon Park;Kyuheon Kim
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.683-696
    • /
    • 2024
  • The point cloud provides viewers with intuitive geometric understanding but requires a huge amount of data. Moving Picture Experts Group (MPEG) has developed video-based point-cloud compression in the range of 300-700. As the compression rate increases, the complexity increases to the extent that it takes 101.36 s to compress one frame in an experimental environment using a personal computer. To realize real-time point-cloud compression processing, the direct patch projection (DPP) method proposed herein simplifies the complex patch segmentation process by classifying and projecting points according to their geometric positions. The DPP method decreases the complexity of the patch segmentation from 25.75 s to 0.10 s per frame, and the entire process becomes 8.76 times faster than the conventional one. Consequently, this proposed DPP method yields similar peak signal-to-noise ratio (PSNR) outcomes to those of the conventional method at reduced times (4.7-5.5 times) at the cost of bitrate overhead. The objective and subjective results show that the proposed DPP method can be considered when low-complexity requirements are required in lightweight device environments.

Image Restoration and Segmentation for PAN-sharpened High Multispectral Imagery (PAN-SHARPENED 고해상도 다중 분광 자료의 영상 복원과 분할)

  • Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1003-1017
    • /
    • 2017
  • Multispectral image data of high spatial resolution is required to obtain correct information on the ground surface. The multispectral image data has lower resolution compared to panchromatic data. PAN-sharpening fusion technique produces the multispectral data with higher resolution of panchromatic image. Recently the object-based approach is more applied to the high spatial resolution data than the conventional pixel-based one. For the object-based image analysis, it is necessary to perform image segmentation that produces the objects of pixel group. Image segmentation can be effectively achieved by the process merging step-by-step two neighboring regions in RAG (Regional Adjacency Graph). In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. This degradation increases variation of pixel values in same area, and results in deteriorating the accuracy of image segmentation. An iterative approach that reduces the difference of pixel values in two neighboring pixels of same area is employed to alleviate variation of pixel values in same area. The size of segmented regions is associated with the quality of image segmentation and is decided by a stopping rue in the merging process. In this study, the image restoration and segmentation was quantitatively evaluated using simulation data and was also applied to the three PAN-sharpened multispectral images of high resolution: Dubaisat-2 data of 1m panchromatic resolution from LA, USA and KOMPSAT3 data of 0.7m panchromatic resolution from Daejeon and Chungcheongnam-do in the Korean peninsula. The experimental results imply that the proposed method can improve analytical accuracy in the application of remote sensing high resolution PAN-sharpened multispectral imagery.

An Efficient Numeric Character Segmentation of Metering Devices for Remote Automatic Meter Reading (원격 자동 검침을 위한 효과적인 계량기 숫자 분할)

  • Toan, Vo Van;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.737-747
    • /
    • 2012
  • Recently, in order to support automatic meter reading for conventional metering devices, an image processing-based approach of recognizing the number meter data in the captured meter images has attracted many researchers' interests. Numerical character segmentation is a very critical process for successful recognition. In this paper, we propose an efficient numeric character segmentation method which can segment numeric characters well for any metering device types under diverse illumination environments. The proposed method consists of two consecutive stages; detection of number area containing all numbers as a tight ROI(Region of Interest) and segmentation of numerical characters in the ROI. Detection of tight ROI is achieved in two steps: extraction of rough ROI by utilizing horizontal line segments after illumination enhancement preprocessing, and making the rough ROI more tight through clipping utilizing vertical and horizontal projection about binarized ROI. Numerical character segmentation in the detected ROI is stably achieved in two processes of 'vertical segmentation of each number region' and 'number segmentation in the each vertical segmented number region'. Through the experiments about a homegrown meter image database containing various meter type images of low contrast, low intensity, shadow, and saturation, it is shown that the proposed numeric character segmentation method performs effectively well for any metering device types under diverse illumination environments.