• Title/Summary/Keyword: Segmentation model

Search Result 1,063, Processing Time 0.033 seconds

Towards Effective Entity Extraction of Scientific Documents using Discriminative Linguistic Features

  • Hwang, Sangwon;Hong, Jang-Eui;Nam, Young-Kwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1639-1658
    • /
    • 2019
  • Named entity recognition (NER) is an important technique for improving the performance of data mining and big data analytics. In previous studies, NER systems have been employed to identify named-entities using statistical methods based on prior information or linguistic features; however, such methods are limited in that they are unable to recognize unregistered or unlearned objects. In this paper, a method is proposed to extract objects, such as technologies, theories, or person names, by analyzing the collocation relationship between certain words that simultaneously appear around specific words in the abstracts of academic journals. The method is executed as follows. First, the data is preprocessed using data cleaning and sentence detection to separate the text into single sentences. Then, part-of-speech (POS) tagging is applied to the individual sentences. After this, the appearance and collocation information of the other POS tags is analyzed, excluding the entity candidates, such as nouns. Finally, an entity recognition model is created based on analyzing and classifying the information in the sentences.

Size Estimation for Shrimp Using Deep Learning Method

  • Heng Zhou;Sung-Hoon Kim;Sang-Cheol Kim;Cheol-Won Kim;Seung-Won Kang
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.112-119
    • /
    • 2023
  • Shrimp farming has been becoming a new source of income for fishermen in South Korea. It is often necessary for fishers to measure the size of the shrimp for the purpose to understand the growth rate of the shrimp and to determine the amount of food put into the breeding pond. Traditional methods rely on humans, which has huge time and labor costs. This paper proposes a deep learning-based method for calculating the size of shrimps automatically. Firstly, we use fine-tuning techniques to update the Mask RCNN model with our farm data, enabling it to segment shrimps and generate shrimp masks. We then use skeletonizing method and maximum inscribed circle to calculate the length and width of shrimp, respectively. Our method is simple yet effective, and most importantly, it requires a small hardware resource and is easy to deploy to shrimp farms.

Brain Extraction of MR Images

  • Du, Ruoyu;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.455-458
    • /
    • 2010
  • Extracting the brain from magnetic resonance imaging head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool produces a brain mask which may be too smooth for practical use to reduce the accuracy. This paper presents a novel and indirect brain extraction method based on non-brain tissue segmentation. Based on ITK, the proposed method allows a non-brain contour by using region growing to match with the original image naturally and extract the brain tissue. Experiments on two set of MRI data and 2D brain image in horizontal plane and 3D brain model indicate successful extraction of brain tissue from a head.

BOX-AND-ELLIPSE-BASED NEURO-FUZZY APPROACH FOR BRIDGE COATING ASSESSMENT

  • Po-Han Chen;Ya-Ching Yang;Luh-Maan Chang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.257-262
    • /
    • 2009
  • Image processing has been utilized for assessment of infrastructure surface coating conditions for years. However, there is no robust method to overcome the non-uniform illumination problem to date. Therefore, this paper aims to deal with non-uniform illumination problems for bridge coating assessment and to achieve automated rust intensity recognition. This paper starts with selection of the best color configuration for non-uniformly illuminated rust image segmentation. The adaptive-network-based fuzzy inference system (ANFIS) is adopted as the framework to develop the new model, the box-and-ellipse-based neuro-fuzzy approach (BENFA). Finally, the performance of BENFA is compared to the Fuzzy C-Means (FCM) method, which is often used in image recognition, to show the advantage and robustness of BENFA.

  • PDF

An Efficient Text Detection Model using Bidirectional Feature Fusion (양방향 특징 결합을 이용한 효율적 문자 탐지 모델)

  • Lim, Seong-Taek;Choi, Hoeryeon;Lee, Hong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.67-68
    • /
    • 2021
  • 기존 객체탐지는 경계 상자 회귀방식을 적용하였지만, 문자는 왜곡과 변형이 심한 특성을 가진 객체로 U-net 구조의 이미지 분할 방식을 사용하는 경우가 많다. 따라서 최근 문자 탐지는 통계적 모델에 비해 높은 정확도를 보이는 심층 신경망 기반의 모델 연구가 많이 진행되고 있다. 본 연구에서는 이미지 분할을 통한 양방향 특징 결합 기법을 사용한 문자 탐지 모델을 제안한다. 이미지 분할 방식은 메모리의 효율이 떨어지기 때문에 이를 극복하고자 특징 추출 단계에서 경량화된 네트워크를 적용하였다. 또한, 객체 탐지에서 큰 성과를 보인 양방향 특징 결합 모듈을 U-net 구조에 추가하여 추출된 특징이 효과적으로 결합 되는 결과를 얻었다. 제안하는 모델의 문자 탐지 성능은 합성 문자 데이터셋을 이용한 실험을 통해 기존의 U-net 구조의 이미지 분할 방식보다 향상되었음을 확인하였다.

  • PDF

3D mesh compression using model segmentation and de-duplications (모델 분할 및 중복성 제거 기법을 이용한 3차원 메쉬 압축 기술)

  • Kim, Sungjei;Jeong, Jinwoo;Yoon, Ju Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.190-191
    • /
    • 2020
  • 본 논문은 모델 분할 기법과 중복성 제거 기법을 통한 대용량 3차원 메쉬 모델의 고속 압축 기술에 관한 내용이다. 대용량 3차원 메쉬 모델의 비실시간 압축은 실시간 스트리밍 응용 시나리오에서 제약점으로 작용하고 있고, 본 논문에서는 인코딩 시간을 줄이기 위해 경량 메쉬 분할 방법을 통해 대용량 메쉬를 여러 개의 작은 메쉬로 분할하고, 각각의 분할된 메쉬를 병렬적으로 인코딩하여 처리 속도를 개선하였다. 또한, 메쉬 모델 내의 같은 기하학적 정보를 가진 중복된 정점들이 존재할 수 있으며, 중복된 정보를 제거하고 제거된 정점과 삼각형 표면 간의 연결 정보를 갱신하는 과정을 통해 메쉬 모델의 기하학적 정보를 유지하면서 압축 성능을 확보하였다.

  • PDF

Development of Image-Based Artificial Intelligence Model to Automate Material Management at Construction Site (공사현장 자재관리 자동화를 위한 영상기반 인공지능 모델개발)

  • Shin, Yoon-soo;Kim, Junhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.221-222
    • /
    • 2021
  • Conventionally, in material management at a construction site, the type, size, and quantity of materials are identified by the eyes of the worker. Labor-intensive material management by manpower is slow, requires a lot of manpower, is prone to errors, and has limitations in that computerization of information on the identified types and quantities is additionally required. Therefore, a method that can quickly and accurately determine the type, size, and quantity of materials with a minimum number of workers is required to reduce labor costs at the construction site and improve work efficiency. In this study, we developed an automated convolution neural network(CNN) and computer vision technology-based rebar size and quantity estimation system that can quickly and accurately determine the type, size, and quantity of materials through images.

  • PDF

Development of Multi-Organ Segmentation Model for Support Abdominal Disease Diagnosis (복부질환 진단 지원을 위한 다중 장기 분할 모델 개발)

  • Si-Hyeong Noh;Dong-Wook Lim;Chungsub Lee;Tae-Hoon Kim;Chul Park;Chang-Won Jeong
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.546-548
    • /
    • 2023
  • 인공지능 기술을 도입한 의료분야에서 진단 및 예측을 위한 관련 연구가 활발하게 진행되고 있다. 특히, 인공지능 기술 적용에 가장 많이 활용되고 있는 의료영상을 기반으로 하는 질환에 관한 진단 연구는 매우 복잡한 과정이 필요한 질환의 진단에 큰 영향을 미치고 있다. 복부 장기들의 분할은 환자의 질환 진단 지원 및 복강경등의 수술 지원에 매우 중요한 부분을 차지한다. 본 논문에서는 의료영상을 통해 13가지 복부 장기들을 분할하는 모델을 만들고 그 결과를 보인다. 본 논문에서 제안한 모델을 통해 13가지 복부 장기에 대한 분할로 영상분석을 통해 진단 지원이 가능할 것으로 기대한다.

Development of Game Graphics and AI Picture Classification Model for Real-Life Images on CNN (CNN 기반의 실사 이미지에 대한 게임 그래픽과 AI 그림 분류 모델 개발)

  • Seung-Bo Park;Dong-Hwi Cho;Seo-Young Choi;Eun-Ji Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.465-466
    • /
    • 2023
  • AI 기술의 발전으로 AI가 그린 그림과 인간이 직접 그린 그림을 식별하는 것이 어려워졌다. AI 기술을 통해 작품을 특정 화풍으로 그리는 것이 쉬워져 작품 도용과 평가 절하가 증가하고 있으며, AI가 인간과 유사하게 그림을 표현하는 경우 딥페이크 피싱과 같은 악용 사례도 늘어나고 있다. 따라서 본 논문에서는 AI 그림을 식별하기 위한 인공지능 모델 개발을 목표로 하고 있으며, 데이터셋을 구축하여 인공지능 기술을 활용한 알고리즘을 개발한다. YOLO Segmentation과 CNN을 활용하여 학습을 진행하고, 이를 통해 도용과 딥페이크 피해를 방지하는 프로세스를 제안한다.

  • PDF

A comparative study on the characteristics of each version of object detection model YOLO (객체탐지모델 YOLO의 버전별 특성 비교 연구)

  • Joon-Yong Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.75-78
    • /
    • 2023
  • 본 논문은 객체탐지 모델 중 주류를 이루고 있는 YOLO의 v1부터 v8까지의 특성을 비교 분석하여 각각의 버전에 최적화할 수 있는 모델에 대한 연구이다. 연구 결과 v1, v2는 정확성이 최우선인 모델에 적합하다. 반면, v3, v4는 속도가 우선인 모델에 적합하다. 또한 v5, v6는 정확도와 속도 사이의 균형이 필요한 모델에 적합하다는 결론을 얻었다. v7, v8은 메모리 및 컴퓨팅 성능에 제약이 있는 경우 주로 적용이 가능하며, 적은 연산과 저 메모리 사용으로 객체를 탐지하여 포즈추정이나 객체 추적 등을 적용할 모델에 적합하다는 결과를 확인하였다.

  • PDF