This paper describes the algorithm which extracts moving vehicles from sequential images and tracks those vehicles using Kalman filter. This work is composed of a motion segmentation stage which extracts moving objects from sequential images and gets features of objects, and a motion estimation stage which estimates the position and the motion of moving objects using Kalman filter. In the motion estimation stage, applying to affine motion model we divided the Kalman filter into position filter and velocity filter to employ linear Kalman filter. Multi-target tracking requires a data association component that decides which measurement to use for updating the state of which object. We use pattern recognition method to solve this problem.
Journal of the Korean Institute of Telematics and Electronics S
/
v.34S
no.2
/
pp.71-78
/
1997
Markov random field models have extensively used in applications such as image segmentation and image restoration. In this paper, we consider the relation between the stationarity of parameters and the synthesized images for gauss-markov rnadom field which has the most popularly used among many MRF models. GMRF model, which is both wide-sense Markov and strict-sense markov, has AR representations and is also a kind of gibbs distribution. Therefore, we may approach in aspect of both AR models and gibbs models. We show the relation between the stationarity of parameters and the images which are synthesized by two approaching methods and derive the stationary regions of parameters in 1st order and isotropic 2nd order case.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.255-260
/
1997
일반적으로 한국어는 띄어쓰기 단위인 어절이 형태소 분석의 입력 단위로 쓰이고 있다. 그러나 실제 영역(real domain)에서 사용되는 텍스트에서는 띄어쓰기 오류와 같은 비문법적인 형태도 빈번히 쓰이고 있다. 따라서 형태소 분석 과정에 선행하여 적합한 형태소 분석의 단위를 인식하는 과정이 이루어져야 한다. 본 연구에서는 한국어의 음절 특성을 이용한 형태소분석을 위한 어절 인식 방법을 제안한다. 제안하는 방법은 사전에 기반하지 않고 원형코퍼스(raw corpus)로부터의 필요한 음절 정보 및 어휘정보를 추출하는 방법을 취하므로 오류가 포함된 문장에 대하여 견고한 분석이 가능하고 많은 시간과 노력이 요구되는 사전구축 및 관리 작업을 필요로 하지 않는다는 장점이 있다. 한국어 어절 인식을 위하여 본 논문에서는 세가지 확률 모텔과 동적 프로그래밍에 기반한 인식 알고리즘을 제안한다. 제안하는 모델들을 띄어쓰기 오류문제와 한국어 복합명사 분석 문제에 적용하여 실험한 결과 82-85%정도의 인식 정확도를 보였다.
In this work, we propose an automatic word spacing system for Korean using conditional random fields (CRFs) with Korean features. We map a word spacing problem into a classification problem in our work. We build a basic system which uses CRFs and Eumjeol bigram. After then, we analyze the result of inner-test. We extend a basic system added by some Korean features which are Josa, Eomi and two head Eumjeols of word extracting from lexicon. From the results of experiment, we can see that the proposed method is better than previous methods. Additionally the proposed method will be able to use mobile and speech applications because of very small size of model.
본 논문은 형태소 분석 및 품사 태깅을 위해 seq2seq 주의집중 모델을 이용하는 접근 방법에 대하여 기술한다. seq2seq 모델은 인코더와 디코더로 분할되어 있고, 일반적으로 RNN(recurrent neural network)를 기반으로 한다. 형태소 분석 및 품사 태깅을 위해 seq2seq 모델의 학습 단계에서 음절 시퀀스는 인코더의 입력으로, 각 음절에 해당하는 품사 태깅 시퀀스는 디코더의 출력으로 사용된다. 여기서 음절 시퀀스와 품사 태깅 시퀀스의 대응관계는 주의집중(attention) 모델을 통해 접근하게 된다. 본 연구는 사전 정보나 자질 정보와 같은 추가적 리소스를 배제한 end-to-end 접근 방법의 실험 결과를 제시한다. 또한, 디코딩 단계에서 빔(beam) 서치와 같은 추가적 프로세스를 배제하는 접근 방법을 취한다.
The Transactions of the Korean Institute of Electrical Engineers P
/
v.52
no.1
/
pp.35-41
/
2003
In this paper, a machine vision system for recognizing and classifying the patterns and marks engraved by die molding or laser marking on the glass panels of computer monitors is suggested and evaluated experimentally. The vision system is equipped with a neural network and an NGC pattern classifier including searching process based on normalized grayscale correlation and adaptive binarization. This system is found to be applicable even to the cases in which the segmentation of the pattern area from the background using ordinary blob coloring technique is quite difficult. The inspection process is accomplished by the use of the NGC hypothesis and ANN verification. The proposed pattern recognition system is composed of three parts: NGC matching process and the preprocessing unit for acquiring the best quality of binary image data, a neural network-based recognition algorithm, and the learning algorithm for the neural network. Another contribution of this paper is the method of generating the training patterns from only a few typical product samples in place of real images of all types of good products.
한국어 형태소 분석은 많은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있기 때문에 형태소를 분류하고 형태소에 맞는 알맞은 품사를 결정하는 것은 매우 중요하다. 형태소의 품사를 태깅하는 대표적인 방법은 크게 음절 단위 형태소 분석과 단어 단위 형태소 분석의 두 가지로 나눌 수 있다. 본 논문에서는 의존 파싱 분야에서 널리 활용되고 있는 전이 기반 방식을 적용하여 전이 기반 단어 단위 한국어 형태소 분석 모델을 제안하고 해당 모델을 한국어 형태소 분석 데이터인 세종 품사 부착 말뭉치 셋에 적용하여 F1 97.77 %로 기존의 성능을 더욱 향상시켰다.
The Pulse Coupled Neural Network (PCNN) is a kind of neural network models that consists of spiking neurons and local connections. The PCNN was originally proposed as a model that can reproduce the synchronous phenomena of the neurons in the cat visual cortex. Recently, the PCNN has been applied to the various image processing applications, e.g., image segmentation, edge detection, pattern recognition, and so on. The method for the image matching using the PCNN had been proposed as one of the valuable applications of the PCNN. In this method, the Genetic Algorithm is applied to the PCNN parameter learning for the image matching. In this study, we propose the method of the similar image rating using the PCNN. In our method, the Genetic Algorithm based method is applied to the parameter learning of the PCNN. We show the performance of our method by simulations. From the simulation results, we evaluate the efficiency and the general versatility of our parameter learning method.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.477-479
/
2011
본 논문에서는 1차원 은닉 마코프 모델을 2차원으로 확장하기 위하여 노드들의 마코프 특성이 인과적인 관계를 갖는 마코프 메쉬 모델을 이용하여 완전한 2차원 HMM의 구조를 갖는 모델을 제안한다. 마코프메쉬 모델은 이웃시스템을 통하여 이전의 시점을 정의하고, 인과적인 관계를 통하여 전이확률의 계산을 가능하게 한다. 또한 영상의 최적의 분할을 위하여 계층적 디리슐레 과정을 사전분포로 두어 고정된 상태의 수가 아닌 무한의 상태 수를 갖는 2차원 HMM을 제안한다. HDP로 정의된 사전분포와 관측된 표본 자료의 정보를 갖는 우도함수를 결합한 사후분포의 베이스 추정은 깁스샘플링 알고리즘을 이용하여 계산된다.
This paper proposes the hand contour detector which is robust to noises. Existing methods reduce noises by applying morphology to extracted edges, detect finger tips by using the center of hands, or exploit the intersection of curves from hand area candidates based on J-value segmentation(JSEG). However, these approaches are so vulnerable to noises that are prone to detect non-hand parts. We propose the noise tolerant hand contour detection method in which non-skin area noises are removed by applying skin area detection, contour detection, and a threshold value. By using the implemented system, we observed that the system was successfully able to detect hand contours.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.