• Title/Summary/Keyword: Segmentation model

Search Result 1,063, Processing Time 1.571 seconds

A Study on Market Expansion Strategy via Two-Stage Customer Pre-segmentation Based on Customer Innovativeness and Value Orientation (고객혁신성과 가치지향성 기반의 2단계 사전 고객세분화를 통한 시장 확산 전략)

  • Heo, Tae-Young;Yoo, Young-Sang;Kim, Young-Myoung
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.1
    • /
    • pp.73-97
    • /
    • 2007
  • R&D into future technologies should be conducted in conjunction with technological innovation strategies that are linked to corporate survival within a framework of information and knowledge-based competitiveness. As such, future technology strategies should be ensured through open R&D organizations. The development of future technologies should not be conducted simply on the basis of future forecasts, but should take into account customer needs in advance and reflect them in the development of the future technologies or services. This research aims to select as segmentation variables the customers' attitude towards accepting future telecommunication technologies and their value orientation in their everyday life, as these factors wilt have the greatest effect on the demand for future telecommunication services and thus segment the future telecom service market. Likewise, such research seeks to segment the market from the stage of technology R&D activities and employ the results to formulate technology development strategies. Based on the customer attitude towards accepting new technologies, two groups were induced, and a hierarchical customer segmentation model was provided to conduct secondary segmentation of the two groups on the basis of their respective customer value orientation. A survey was conducted in June 2006 on 800 consumers aged 15 to 69, residing in Seoul and five other major South Korean cities, through one-on-one interviews. The samples were divided into two sub-groups according to their level of acceptance of new technology; a sub-group demonstrating a high level of technology acceptance (39.4%) and another sub-group with a comparatively lower level of technology acceptance (60.6%). These two sub-groups were further divided each into 5 smaller sub-groups (10 total smaller sub-groups) through two rounds of segmentation. The ten sub-groups were then analyzed in their detailed characteristics, including general demographic characteristics, usage patterns in existing telecom services such as mobile service, broadband internet and wireless internet and the status of ownership of a computing or information device and the desire or intention to purchase one. Through these steps, we were able to statistically prove that each of these 10 sub-groups responded to telecom services as independent markets. We found that each segmented group responds as an independent individual market. Through correspondence analysis, the target segmentation groups were positioned in such a way as to facilitate the entry of future telecommunication services into the market, as well as their diffusion and transferability.

  • PDF

Experiments of Individual Tree and Crown Width Extraction by Band Combination Using Monthly Drone Images (월별 드론 영상을 이용한 밴드 조합에 따른 수목 개체 및 수관폭 추출 실험)

  • Lim, Ye Seul;Eo, Yang Dam;Jeon, Min Cheol;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Drone images with high spatial resolution are emerging as an alternative to previous studies with extraction limits in high density forests. Individual tree in the dense forests were extracted from drone images. To detect the individual tree extracted through the image segmentation process, the image segmentation results were compared between the combination of DSM and all R,G,B band and the combination of DSM and R,G,B band separately. The changes in the tree density of a deciduous forest was experimented by time and image. Especially the image of May when the forests are dense, among the images of March, April, May, the individual tree extraction rate based on the trees surveyed on the site was 50%. The analysis results of the width of crown showed that the RMSE was less than 1.5m, which was the best result. For extraction of the experimental area, the two sizes of medium and small trees were extracted, and the extraction accuracy of the small trees was higher. The forest tree volume and forest biomass could be estimated if the tree height is extracted based on the above data and the DBH(diameter at breast height) is estimated using the relational expression between crown width and DBH.

Image segmentation using fuzzy worm searching and adaptive MIN-MAX clustering based on genetic algorithm (유전 알고리즘에 기반한 퍼지 벌레 검색과 자율 적응 최소-최대 군집화를 이용한 영상 영역화)

  • Ha, Seong-Wook;Kang, Dae-Seong;Kim, Dai-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.109-120
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAX clustering algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action and spatial relationship of the pixels as the parameters of its objective function. But the conventional segmentation methods for edge extraction generally need the mask information for the algebraic model, and take long run times at mask operation, whereas the proposed algorithm has single operation according to active searching of fuzzy worms. In addition, we also propose both genetic fuzzy worm searching and genetic min-max clustering using genetic algorithm to complete clustering and fuzzy searching on grey-histogram of image for the optimum solution, which can automatically determine the size of ranges and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF

A Development of Road Crack Detection System Using Deep Learning-based Segmentation and Object Detection (딥러닝 기반의 분할과 객체탐지를 활용한 도로균열 탐지시스템 개발)

  • Ha, Jongwoo;Park, Kyongwon;Kim, Minsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.1
    • /
    • pp.93-106
    • /
    • 2021
  • Many recent studies on deep learning-based road crack detection have shown significantly more improved performances than previous works using algorithm-based conventional approaches. However, many deep learning-based studies are still focused on classifying the types of cracks. The classification of crack types is highly anticipated in that it can improve the crack detection process, which is currently relying on manual intervention. However, it is essential to calculate the severity of the cracks as well as identifying the type of cracks in actual pavement maintenance planning, but studies related to road crack detection have not progressed enough to automated calculation of the severity of cracks. In order to calculate the severity of the crack, the type of crack and the area of the crack in the image must be identified together. This study deals with a method of using Mobilenet-SSD that is deep learning-based object detection techniques to effectively automate the simultaneous detection of crack types and crack areas. To improve the accuracy of object-detection for road cracks, several experiments were conducted to combine the U-Net for automatic segmentation of input image and object-detection model, and the results were summarized. As a result, image masking with U-Net is able to maximize object-detection performance with 0.9315 mAP value. While referring the results of this study, it is expected that the automation of the crack detection functionality on pave management system can be further enhanced.

Market Segmentation to Identify Forest Recreation Welfare Consumers (산림휴양복지 수요자에 대한 시장 세분화 연구)

  • Seung Yeon Byun;Seong Yoon Heo;Ja-choon Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.248-257
    • /
    • 2023
  • Because of various societal changes, such as the recent improvement in income levels and extension of the flexible work system, the demand for forest recreation activities and their use patterns are undergoing a change. Accordingly, it is necessary to identify the characteristics of each type through the segmentation of the overall forest recreation and welfare markets and to plan differentiated policies for each market type. This study classifies the forest recreation and welfare activities according to four types of users (i.e., passive usage type, ordinary type, active lover type, and indifferent type) using the Latent Class Analysis and examines their demographic and socioeconomic characteristics to explain the differences between the groups. Three policy implications were derived from the results obtained: 1) the group experiencing forest recreation welfare is subdivided; 2) the socioeconomic characteristics that distinguish the groups undertaking forest recreation activities were identified; and 3) the policy targets and characteristics that can increase the experience of forest recreation welfare were identified. This study is insightful as it suggests differentiated policies for each group and proposes policy measures to move to the desirable group.

Semantic Segmentation of Clouds Using Multi-Branch Neural Architecture Search (멀티 브랜치 네트워크 구조 탐색을 사용한 구름 영역 분할)

  • Chi Yoon Jeong;Kyeong Deok Moon;Mooseop Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.143-156
    • /
    • 2023
  • To precisely and reliably analyze the contents of the satellite imagery, recognizing the clouds which are the obstacle to gathering the useful information is essential. In recent times, deep learning yielded satisfactory results in various tasks, so many studies using deep neural networks have been conducted to improve the performance of cloud detection. However, existing methods for cloud detection have the limitation on increasing the performance due to the adopting the network models for semantic image segmentation without modification. To tackle this problem, we introduced the multi-branch neural architecture search to find optimal network structure for cloud detection. Additionally, the proposed method adopts the soft intersection over union (IoU) as loss function to mitigate the disagreement between the loss function and the evaluation metric and uses the various data augmentation methods. The experiments are conducted using the cloud detection dataset acquired by Arirang-3/3A satellite imagery. The experimental results showed that the proposed network which are searched network architecture using cloud dataset is 4% higher than the existing network model which are searched network structure using urban street scenes with regard to the IoU. Also, the experimental results showed that the soft IoU exhibits the best performance on cloud detection among the various loss functions. When comparing the proposed method with the state-of-the-art (SOTA) models in the field of semantic segmentation, the proposed method showed better performance than the SOTA models with regard to the mean IoU and overall accuracy.

A study on DEMONgram frequency line extraction method using deep learning (딥러닝을 이용한 DEMON 그램 주파수선 추출 기법 연구)

  • Wonsik Shin;Hyuckjong Kwon;Hoseok Sul;Won Shin;Hyunsuk Ko;Taek-Lyul Song;Da-Sol Kim;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.78-88
    • /
    • 2024
  • Ship-radiated noise received by passive sonar that can measure underwater noise can be identified and classified ship using Detection of Envelope Modulation on Noise (DEMON) analysis. However, in a low Signal-to-Noise Ratio (SNR) environment, it is difficult to analyze and identify the target frequency line containing ship information in the DEMONgram. In this paper, we conducted a study to extract target frequency lines using semantic segmentation among deep learning techniques for more accurate target identification in a low SNR environment. The semantic segmentation models U-Net, UNet++, and DeepLabv3+ were trained and evaluated using simulated DEMONgram data generated by changing SNR and fundamental frequency, and the DEMONgram prediction performance of DeepShip, a dataset of ship-radiated noise recordings on the strait of Georgia in Canada, was compared using the trained models. As a result of evaluating the trained model with the simulated DEMONgram, it was confirmed that U-Net had the highest performance and that it was possible to extract the target frequency line of the DEMONgram made by DeepShip to some extent.

Development of a Model-Based Motor Fault Detection System Using Vibration Signal (진동 신호 이용 모델 기반 모터 결함 검출 시스템 개발)

  • ;A.G. Parlos
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.874-882
    • /
    • 2003
  • The condition assessment of engineering systems has increased in importance because the manpower needed to operate and supervise various plants has been reduced. Especially, induction motors are at the core of most engineering processes, and there is an indispensable need to monitor their health and performance. So detection and diagnosis of motor faults is a base to improve efficiency of the industrial plant. In this paper, a model-based fault detection system is developed for induction motors, using steady state vibration signals. Early various fault detection systems using vibration signals are a trivial method and those methods are prone to have missed fault or false alarms. The suggested motor fault detection system was developed using a model-based reference value. The stationary signal had been extracted from the non-stationary signal using a data segmentation method. The signal processing method applied in this research is FFT. A reference model with spectra signal is developed and then the residuals of the vibration signal are generated. The ratio of RMS values of vibration residuals is proposed as a fault indicator for detecting faults. The developed fault detection system is tested on 800 hp motor and it is shown to be effective for detecting faults in the air-gap eccentricities and broken rotor bars. The suggested system is shown to be effective for reducing missed faults and false alarms. Moreover, the suggested system has advantages in the automation of fault detection algorithms in a random signal system, and the reference model is not complicated.

Speech detection from broadcast contents using multi-scale time-dilated convolutional neural networks (다중 스케일 시간 확장 합성곱 신경망을 이용한 방송 콘텐츠에서의 음성 검출)

  • Jang, Byeong-Yong;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.89-96
    • /
    • 2019
  • In this paper, we propose a deep learning architecture that can effectively detect speech segmentation in broadcast contents. We also propose a multi-scale time-dilated layer for learning the temporal changes of feature vectors. We implement several comparison models to verify the performance of proposed model and calculated the frame-by-frame F-score, precision, and recall. Both the proposed model and the comparison model are trained with the same training data, and we train the model using 32 hours of Korean broadcast data which is composed of various genres (drama, news, documentary, and so on). Our proposed model shows the best performance with F-score 91.7% in Korean broadcast data. The British and Spanish broadcast data also show the highest performance with F-score 87.9% and 92.6%. As a result, our proposed model can contribute to the improvement of performance of speech detection by learning the temporal changes of the feature vectors.

A New Latent Class Model for Analysis of Purchasing and Browsing Histories on EC Sites

  • Goto, Masayuki;Mikawa, Kenta;Hirasawa, Shigeichi;Kobayashi, Manabu;Suko, Tota;Horii, Shunsuke
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.335-346
    • /
    • 2015
  • The electronic commerce site (EC site) has become an important marketing channel where consumers can purchase many kinds of products; their access logs, including purchase records and browsing histories, are saved in the EC sites' databases. These log data can be utilized for the purpose of web marketing. The customers who purchase many product items are good customers, whereas the other customers, who do not purchase many items, must not be good customers even if they browse many items. If the attributes of good customers and those of other customers are clarified, such information is valuable as input for making a new marketing strategy. Regarding the product items, the characteristics of good items that are bought by many users are valuable information. It is necessary to construct a method to efficiently analyze such characteristics. This paper proposes a new latent class model to analyze both purchasing and browsing histories to make latent item and user clusters. By applying the proposal, an example of data analysis on an EC site is demonstrated. Through the clusters obtained by the proposed latent class model and the classification rule by the decision tree model, new findings are extracted from the data of purchasing and browsing histories.