• Title/Summary/Keyword: Segmentation and feature extraction

Search Result 194, Processing Time 0.032 seconds

Keyword Spotting on Hangul Document Images Using Character Feature Models (문자 별 특징 모델을 이용한 한글 문서 영상에서 키워드 검색)

  • Park, Sang-Cheol;Kim, Soo-Hyung;Choi, Deok-Jai
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.521-526
    • /
    • 2005
  • In this Paper, we propose a keyword spotting system as an alternative to searching system for poor quality Korean document images and compare the Proposed system with an OCR-based document retrieval system. The system is composed of character segmentation, feature extraction for the query keyword, and word-to-word matching. In the character segmentation step, we propose an effective method to remove the connectivity between adjacent characters and a character segmentation method by making the variance of character widths minimum. In the query creation step, feature vector for the query is constructed by a combination of a character model by typeface. In the matching step, word-to-word matching is applied base on a character-to-character matching. We demonstrated that the proposed keyword spotting system is more efficient than the OCR-based one to search a keyword on the Korean document images, especially when the quality of documents is quite poor and point size is small.

Development of Robust Feature Recognition and Extraction Algorithm for Dried Oak Mushrooms (건표고의 외관특징 인식 및 추출 알고리즘 개발)

  • Lee, C.H.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.325-335
    • /
    • 1996
  • Visual features are crucial for monitoring the growth state, indexing the drying performance, and grading the quality of oak mushrooms. A computer vision system with neural net information processing technique was utilized to quantize quality factors of a dried oak mushrooms distributed over the cap and gill sides. In this paper, visual feature extraction algorithm were integrated with the neural net processing to deal with various fuzzy patterns of mushroom shapes and to compensate the fault sensitiveness of the crisp criteria and heuristic rules derived from the image processing results. The proposed algorithm improved the segmentation of the skin features of each side, the identification of cap and gill surfaces, the identification of stipe states and removal of the stipe, etc. And the visual characteristics of dried oak mushrooms were analyzed and primary visual features essential to tile quality evaluation were extracted and quantized. In this study, black and white gray images were captured and used for the algorithm development.

  • PDF

Bird's Eye View Semantic Segmentation based on Improved Transformer for Automatic Annotation

  • Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.1996-2015
    • /
    • 2023
  • High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.

A study on range image segmentation and surface feature extraction (거리 영상 분할과 면 특징 추출에 관한 연구)

  • 현대환;김대현;이선호;최종수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.509-511
    • /
    • 1999
  • 본 논문에서는 일반적으로 영역 기반형 분할방법보다 우수한 분할결과와 계산의 효율성을 가지는 경계선 기반형 방법의 하나인 scan line approximation 방법을 응용함으로써 경계선의 기하학적 해석이 가능하도록 하는 경계선 강도(edge intensity) 정보를 제공한다. 따라서 면 특성과 국부적인 면 특성인 면 법선과 면 곡률정보 없이 잡음에 강건하고 계산의 효율성에서 우수한 거리영상분할 방법을 제안한다. 합성 거리영상을 대상으로 scan line approximation 방법을 응용하여 얻어진 경계선을 경계선 그룹화의 영역 레이블링을 거쳐서 면 특징을 추출하였다.

  • PDF

A Character Recognition System for Gerber File through Modularized Neural Network (모듈화된 신경회로망을 이용한 거버 문자 인식 시스템 구현)

  • Oh, Hye-Won;Park, Tae-Hyong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2549-2551
    • /
    • 2003
  • We propose character recognition system for Gerber files. The Gerber file is the vector-formatted drawing file for PCB manufacturing. To consider the special vector format and rotated characters, we develop segmentation and feature extraction method. The modularized neural network is then applied to the recognition algorithm. Finally, comparative simulation results are presented to verify the usefulness of the proposed method.

  • PDF

Deep Learning-based Pixel-level Concrete Wall Crack Detection Method (딥러닝 기반 픽셀 단위 콘크리트 벽체 균열 검출 방법)

  • Kang, Kyung-Su;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.197-207
    • /
    • 2023
  • Concrete is a widely used material due to its excellent compressive strength and durability. However, depending on the surrounding environment and the characteristics of the materials used in the construction, various defects may occur, such as cracks on the surface and subsidence of the structure. The detects on the surface of the concrete structure occur after completion or over time. Neglecting these cracks may lead to severe structural damage, necessitating regular safety inspections. Traditional visual inspections of concrete walls are labor-intensive and expensive. This research presents a deep learning-based semantic segmentation model designed to detect cracks in concrete walls. The model addresses surface defects that arise from aging, and an image augmentation technique is employed to enhance feature extraction and generalization performance. A dataset for semantic segmentation was created by combining publicly available and self-generated datasets, and notable semantic segmentation models were evaluated and tested. The model, specifically trained for concrete wall fracture detection, achieved an extraction performance of 81.4%. Moreover, a 3% performance improvement was observed when applying the developed augmentation technique.

Super-Pixel-Based Segmentation and Classification for UAV Image (슈퍼 픽셀기반 무인항공 영상 영역분할 및 분류)

  • Kim, In-Kyu;Hwang, Seung-Jun;Na, Jong-Pil;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Recently UAV(unmanned aerial vehicle) is frequently used not only for military purpose but also for civil purpose. UAV automatically navigates following the coordinates input in advance using GPS information. However it is impossible when GPS cannot be received because of jamming or external interference. In order to solve this problem, we propose a real-time segmentation and classification algorithm for the specific regions from UAV image in this paper. We use the super-pixels algorithm using graph-based image segmentation as a pre-processing stage for the feature extraction. We choose the most ideal model by analyzing various color models and mixture color models. Also, we use support vector machine for classification, which is one of the machine learning algorithms and can use small quantity of training data. 18 color and texture feature vectors are extracted from the UAV image, then 3 classes of regions; river, vinyl house, rice filed are classified in real-time through training and prediction processes.

Greedy Merging Method Based on Weighted Geometric Properties for User-Steered Mesh Segmentation (사용자 의도의 메쉬분할을 위한 기하적 속성 가중치 기반의 그리디 병합 방법)

  • Ha, Jong-Sung;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.6
    • /
    • pp.52-59
    • /
    • 2007
  • This paper presents a greedy method for user-steered mesh segmentation, which is based on the merging priority metric defined for representing the geometric properties of meaningful parts. The priority metric is a weighted function composed of five geometric parameters: distribution of Gaussian map, boundary path concavity, boundary path length, cardinality, and segmentation resolution. This scheme can be extended without any modification only by defining more geometric parameters and adding them. Our experimental results show that the shapes of segmented parts can be controlled by setting up the weight values of geometric parameters.

AN IMAGE SEGMENTATION LEVEL SET METHOD FOR BUILDING DETECTION

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.610-614
    • /
    • 2006
  • In this paper the advanced method of geodesic active contours was developed for the task of building detection from aerial and satellite images. Automatic extraction of man-made structures including buildings, building blocks or roads from remote sensing data is useful for land use mapping, scene understanding, robotic navigation, image retrieval, surveillance, emergency management procedures, cadastral etc. A level set method based on a region-driven segmentation model was implemented with which building boundaries were detected, through this curve propagation technique. The essence of this approach is to optimize the position and the geometric form of the curve by measuring information along that curve, and within the regions that compose the image partition. To this end, one can consider uniform intensities inside objects and the background. Thus, given an initial position of the curve, one can determine global, region-driven functions and provide a statistical description of the inside and outside object area. The calculus of variations and a gradient descent method was used to optimize the variational functional by an iterative steady state process. Experimental results demonstrate the potential of the proposed processing scheme.

  • PDF

Segmentation and Appearance Features Index for Digital Video Data

  • Yun, Hong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.697-701
    • /
    • 2010
  • The numbers of digital video cameras are fast increased. Accordingly, digital video data management is becoming more important. Efficient storing method and fast browsing method still remains to be one of significant issue. In this paper, an optimized data storing process without losing information and an organized appearance features indexing method are proposed. Also, the data removing policy could be used to reduce large amount of space and it facilitates fast sequential search. The appearance features index constructs key information of moving objects to answer queries about what people are doing, particularly when, where and who they move. The evaluation results showed better performance in the transfer time and the saving in storage space.