• 제목/요약/키워드: Segmentation and feature extraction

검색결과 194건 처리시간 0.029초

윤곽선 추적에 의한 고딕체 한글의 신속인식에 관한 연구 (A Fast Recognition System of Gothic-Hangul using the Contour Tracing)

  • 정주성;김춘석;박충규
    • 대한전기학회논문지
    • /
    • 제37권8호
    • /
    • pp.579-587
    • /
    • 1988
  • 일반적인 한글 자동 인식 방법은 세선화 과정을 통한 문자의 골격 추추르 기본자소의 분리 및 인식과정으로 이루어진다. 그러나 이 방법은 복잡한 세선화 과정이 필요하고 잡음에 민감하여 전처리 과정에서는 많은 처리가 필요하며 인식과정에서는 복잡성을 피할 수 없다. 본 연구에서는 고딕체 한글의 기본자소들이 윤곽선의 방향 성분들로서 표현이 가능함을 보이고, 복잡한 세선화 과정이 필요없는 윤곽선 방향 성분들의 추출 방법을 보이며, 추출된 윤곽선 방향 성분들로 한글 문자를 자동인식하는 방법을 제안하였다. 구성된 시스템은 전처리 과정이 매우 간단하며, 잡음에 민감하지도 않고 한글 문자의 윤곽선 방향 성분들을 매우 빠르게 추출하였다. 패턴이 인식 과정도 문자열 패턴매칭 방법으로 대치되어 매우 빠르고 정확하게 한글 문자를 인식해 내었다. 인식율은 92%정도 되었다.

조기 화재 경보 시스템을 위한 비디오 기반 연기 감지 방법 (A Smoke Detection Method based on Video for Early Fire-Alarming System)

  • 퉁트룽;김종면
    • 정보처리학회논문지B
    • /
    • 제18B권4호
    • /
    • pp.213-220
    • /
    • 2011
  • 본 논문은 조기 화재 경보 시스템에서 예측하지 못한 위험요소들의 이벤트에 즉각 응답하는 비디오 기반의 효과적인 4단계 연기 감지 방법을 제안한다. 첫 번째 단계에서는 근사 미디언(approximate median) 방법을 사용하여 비디오의 현재 프레임에서 움직이는 영역들을 분리한다. 두 번째 단계에서는 연기의 칼라 기반 분리 기법을 사용하여 이러한 움직이는 영역들로부터 후보 연기 영역을 선택한다. 세 번째 단계에서는 특징추출 알고리즘을 사용하여 연기의 움직임이나 지역 불규칙성과 같은 후보 연기 영역들의 특징을 분석하여 연기의 다섯 가지 특징 파라미터를 추출한다. 네 번째 단계에서는 추출된 다섯 가지 특징 파라미터를 K-nearest neighbor (KNN) 알고리즘의 입력으로 사용하여 후보 연기 영역이 연기인지 아닌지를 구분한다. 모의실험 결과, 제안하는 4 단계 연기 감지 방법은 기존의 연기 감지 알고리즘들과 비교하여 연기감지의 정확도에서 우수한 성능을 보였고, 또한 오픈된 넓은 공간에서도 높은 신뢰성과 낮은 오류 경보율을 보였다.

교육용 어학 영상의 내용 기반 특징 분석에 의한 샷 구분 및 색인에 대한 연구 (A Study on Shot Segmentation and Indexing of Language Education Videos by Content-based Visual Feature Analysis)

  • 한희준
    • 정보관리학회지
    • /
    • 제34권1호
    • /
    • pp.219-239
    • /
    • 2017
  • IT기술이 급속히 발달하고 스마트 기기의 개인보급이 늘어나면서 정보의 전달 매체로 시청각 자료 중에서도 특히 영상 자료가 많이 활용된다. 문헌정보서비스 콘텐츠로서 영상자료는 필수 요소가 되었으며, TV를 통한 단방향 전달, 인터넷을 통한 양방향 서비스, 도서관 시청각 자료 대출 등 다양한 방법으로 활용되고 있다. 특히 인터넷 환경에서 스마트 기기를 통한 영상서비스 관점에서 정보 제공자는 제공 정보에 대한 가공에 적은 노력과 비용을 들이고자 하고, 또한 사용자는 과도한 데이터 사용량에 대한 부담과 시간, 공간적인 제약으로 인해 원하는 부분만을 효율적으로 이용하고자 한다. 따라서 영상에 대한 내용을 유사한 부분끼리 자동으로 구분하고 요약, 색인하여 이용 편의성을 높일 필요가 있다. 본 논문에서는 교육용 어학 영상의 내용과 그 특성을 분석하여 영상을 이루는 샷을 자동으로 구분하고 비주얼 특징을 조합하여 어학 영상의 세분화된 내용 정보를 결정하고 색인하는 방법을 제안한다. 외국어 강의 영상을 이용한 실험에 의해 의미기반의 샷 결정에 높은 정확률을 보였으며, 교육용 어학 영상의 요약 서비스에 효율적으로 적용 가능함을 확인하였다.

Disparity 보정을 위한 컬러와 윤곽선 기반 루피 신뢰도 전파 기법 (Improvement of Disparity Map using Loopy Belief Propagation based on Color and Edge)

  • 김은경;조현학;이한수;수료 아드히 위보워;김성신
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.502-508
    • /
    • 2015
  • 스테레오 영상은 2-D 영상으로 분석할 수 없는 깊이(거리) 정보를 포함하고 있다. 하지만 연산을 통해서 거리정보를 얻을 수 있기 때문에 계산 값의 신뢰도가 낮고, 폐색된 공간 등의 영향으로 오차가 발생한다. 또한 Stereo Matching 시 Global Method를 사용할 경우, 많은 연산량에 따라 계산 시간이 오래 걸린다. 따라서 본 논문에서는 연산 시간이 짧고 더 높은 정확도를 갖는 Disparity Map을 구하는 방법을 제안한다. 특징 기반 영상분할 기법인 윤곽선 추출을 통해 정확도는 높이고 연산 시간은 줄였다. 컬러 기반 영상 분할 기법인 Color K-Means를 통해 관심 영역을 추출하고, 이를 기반으로 Loopy Belief Propagation(LBP)을 접목하였다. 제안하는 방법을 적용함으로 영상 내 물체들의 연관성을 고려한 보정이 가능하였고, 관심 영역 추출에 따라 연산 시간을 줄일 수 있었다. 실험 결과, 기존의 방법들보다 연산 시간이 짧고 정확도가 높은 Disparity Map을 얻을 수 있었다.

모노 카메라 영상기반 시간 간격 윈도우를 이용한 광역 및 지역 특징 벡터 적용 AdaBoost기반 제스처 인식 (AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera)

  • 황승준;고하윤;백중환
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.471-479
    • /
    • 2018
  • 최근 안드로이드, iOS 등의 셋톱박스 기반의 스마트 TV에 대한 보급에 따라 제스처로 TV를 컨트롤 할 수 있는 새로운 접근을 제안한다. 본 논문에서는 모노 카메라 센서를 이용한 AdaBoost 기반 제스처 인식에 관한 알고리즘을 제안한다. 우선, 신체 좌표 추출을 위해 가우시안 배경 제거 및 Camshift 기반 자세 추적 및 추정 알고리즘을 사용한다. AdaBoost 학습 모델을 신체 정규화된 광역 및 지역 특징 벡터의 집합을 특징 패턴으로 하여, 속도가 다른 동작들을 인식할 수 있도록 하였다. 또한 속도가 다른 다양한 제스처를 인식하기 위해 다중 AdaBoost 알고리즘을 적용하였다. CART 알고리즘을 이용하여 성공적인 중요 특징 벡터를 확인하고 중요도가 낮은 특징벡터를 제거하는 방식을 적용하면서 분류 성공률이 높은 최적의 특징 벡터를 탐색하였다. 그 결과 24개의 주성분 특징 벡터를 찾았으며, 기존 알고리즘에 비해 낮은 오분류율(3.73%)과 높은 인식률(95.17%)을 지닌 특징 벡터 및 분류기를 설계하였다.

Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

  • Xu, Guan;Sun, Lina;Li, Xiaotao;Su, Jian;Hao, Zhaobing;Lu, Xue
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.317-329
    • /
    • 2014
  • In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector's direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.

Environmental IoT-Enabled Multimodal Mashup Service for Smart Forest Fires Monitoring

  • Elmisery, Ahmed M.;Sertovic, Mirela
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.163-170
    • /
    • 2017
  • Internet of things (IoT) is a new paradigm for collecting, processing and analyzing various contents in order to detect anomalies and to monitor particular patterns in a specific environment. The collected data can be used to discover new patterns and to offer new insights. IoT-enabled data mashup is a new technology to combine various types of information from multiple sources into a single web service. Mashup services create a new horizon for different applications. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations may utilize IoT - enabled data mashup service to merge different types of datasets from different IoT sensor networks in order to leverage their data analytics performance and the accuracy of the predictions. This paper presents an IoT - enabled data mashup service, where the multimedia data is collected from the various IoT platforms, then fed into an environmental cognition service which executes different image processing techniques such as noise removal, segmentation, and feature extraction, in order to detect interesting patterns in hazardous areas. The noise present in the captured images is eliminated with the help of a noise removal and background subtraction processes. Markov based approach was utilized to segment the possible regions of interest. The viable features within each region were extracted using a multiresolution wavelet transform, then fed into a discriminative classifier to extract various patterns. Experimental results have shown an accurate detection performance and adequate processing time for the proposed approach. We also provide a data mashup scenario for an IoT-enabled environmental hazard detection service and experimentation results.

특징 추출을 이용한 다중 영상 정합 및 융합 연구 (Multimodality Image Registration and Fusion using Feature Extraction)

  • 우상근;김지현
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.123-130
    • /
    • 2007
  • 본 논문에서는 소동물 생체내 실험시 서로 다른 장비에서 획득된 영상의 융합 및 정합을 위한 방법을 제안한다. 마우스의 꼬리 정맥에 $[[^{18}F]FDG$를 주사하여 60분 섭취후 서로 다른 장비에서 동일한 위치의 영상을 획득하기 위하여 아크릴 재질의 소동물 가이드에 기준마크를 설정하고 microPET과 CT 영상을 획득하였다. MicroPET으로 획득된 리스트모드(list-mode) 데이터는 Fourier Rebinning(FRB) 방법을 사용하여 사이노그램(Sinogram)으로 변환 후 4 번의 반복횟수를 가지는 Ordered Subset Expectation Maximization(OSEM) 알고리즘으로 재구성하였다. MicroPET 영상획득후 PET/CT의 CT를 이용하여 CT영상을 획득하였다. MicroPET 영상에서 폐영역을 정확히 찾아내는 어려움이 있어. 해부학적 정보를 제공하는 CT 영상을 이용하여 폐 영역을 구분하였다. 영상 융합을 위한 불일치 부분을 해결하기 위하여 기준마크의 정보와 폐 영역의 정보를 이용하여 회전과 이동정보를 가지는 어파인 (affine) 변환 행렬 구하여 영상 정합에 사용하였다. 이 방법은 정량적 정확성과 영상 해석의 정확성을 개선할 것으로 기대된다.

  • PDF

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • 제5권2호
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법 (Lip Reading Method Using CNN for Utterance Period Detection)

  • 김용기;임종관;김미혜
    • 디지털융복합연구
    • /
    • 제14권8호
    • /
    • pp.233-243
    • /
    • 2016
  • 소음환경에서의 음성인식 문제점으로 인해 1990년대 중반부터 음성정보와 영양정보를 결합한 AVSR(Audio Visual Speech Recognition) 시스템이 제안되었고, Lip Reading은 AVSR 시스템에서 시각적 특징으로 사용되었다. 본 연구는 효율적인 AVSR 시스템을 구축하기 위해 입 모양만을 이용한 발화 단어 인식률을 극대화하는데 목적이 있다. 본 연구에서는 입 모양 인식을 위해 실험단어를 발화한 입력 영상으로부터 영상의 전처리 과정을 수행하고 입술 영역을 검출한다. 이후 DNN(Deep Neural Network)의 일종인 CNN(Convolution Neural Network)을 이용하여 발화구간을 검출하고, 동일한 네트워크를 사용하여 입 모양 특징 벡터를 추출하여 HMM(Hidden Markov Mode)으로 인식 실험을 진행하였다. 그 결과 발화구간 검출 결과는 91%의 인식률을 보임으로써 Threshold를 이용한 방법에 비해 높은 성능을 나타냈다. 또한 입모양 인식 실험에서 화자종속 실험은 88.5%, 화자 독립 실험은 80.2%로 이전 연구들에 비해 높은 결과를 보였다.