• 제목/요약/키워드: Seepage force

검색결과 56건 처리시간 0.019초

Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening

  • Zou, Jin-Feng;Chen, Kai-Fu;Pan, Qiu-Jing
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.907-928
    • /
    • 2017
  • The effects of seepage force and out-of-plane stress on cavity contracting and tunnel opening was investigated in this study. The generalized Hoek-Brown (H-B) failure criterion and non-associated flow rule were adopted. Because of the complex solution of pore pressure in an arbitrary direction, only the pore pressure through the radial direction was assumed in this paper. In order to investigate the effect of out-of-plane stress and seepage force on the cavity contraction and circular tunnel opening, three cases of the out-of-plane stress being the minor, intermediate, or major principal stress are assumed separately. A method of plane strain problem is adopted to obtain the stress and strain for cavity contracting and circular tunnel opening for three cases, respectively, that incorporated the effects of seepage force. The proposed solutions were validated by the published results and the correction is verified. Several cases were analyzed, and parameter studies were conducted to highlight the effects of seepage force, H-B constants, and out-of-plane stress on stress, displacement, and plastic radius with the numerical method. The proposed method may be used to address the complex problems of cavity contraction and tunnel opening in rock mass.

Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion

  • Yang, X.L.;Qin, C.B.
    • Geomechanics and Engineering
    • /
    • 제6권5호
    • /
    • pp.503-515
    • /
    • 2014
  • On the basis of Hoek-Brown failure criterion, a numerical solution for the shape of collapsing block in the rectangular cavity subjected to seepage forces is obtained by upper bound theorem of limit analysis. The seepage forces obtained from the gradient of excess pore pressure distribution are taken as external loadings in the limit analysis, and the pore pressure is easily calculated with pore pressure coefficient. Thus the seepage force is incorporated into the upper bound analysis as a work rate of external force. The upper solution of the shape of collapsing block is derived by virtue of variational calculation. In order to verify the validity of the method proposed in the paper, the result when the pore pressure coefficient equals zero, and only hydrostatic pressure is taken into consideration, is compared with that of previous work. The results show good effectiveness in calculating the collapsing block shape subjected to seepage forces. The influence of parameters on the failure mechanisms is investigated.

침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰 (Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces)

  • 남석우;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

Small Dam의 斜面安定 解析 (The Analysis of the Slope Stability for the Small Dam)

  • 최기봉;배우석
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.88-92
    • /
    • 2004
  • The paper decribes a procedure for the evaluation of the effect of seepage force on stability of slopes. The stability of an embankment impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change of reservoir level. Seepage forces in embankments are easily determined interest is the stability following a rapid change of resrvoir level. Seepage forces in embankments are easily detemined if frictional forces are expressed in relation to hydraulic gradient I. If a piezometer is inserted into a body of embankment, the level to which fee water rises is a measure of the energy at that point.

침투력을 고려한 사면안정의 이론적 해석 (The Theoritical Analysis of the Slope Stability subjected to Seepage Force)

  • Gi-Bong Choi
    • 한국안전학회지
    • /
    • 제11권4호
    • /
    • pp.151-155
    • /
    • 1996
  • 사면안정 해석에 있어서 기존의 연구는 대부분 침투력의 값을 고려하지 않고 안전율을 계산하여 왔다. 그러나 비정상 침투시 침투력은 안전율에 많은 영향을 미친다. 따라서 본 연구에서는 사면안정해석에 있어서 침투력의 영역이 사면의 안전율에 미치는 영향이 큰 것을 확인하기 위해서 Bishop's Simplified Method를 이용하여 이론적으로 침투력을 고려한 안전율계산 수식을 유도하였다. 사면안정 이론식의 전개방법은 제체에 침윤선이 형성될 경우 침윤선을 기준으로 각 절편을 수중상태와 습윤상태로 구분하고, 이 습윤상태의 절편토체에 작용하는 침투력을 고려하여 사면안정수식을 해석했다.

  • PDF

강관다단 그라우팅으로 보강된 터널의 막장 안정성 평가 (Evaluation of Face Stability of Tunnel with Steel Pipe-Reinforced Multi-step Grouting)

  • 이인모;이재성;남석우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.273-280
    • /
    • 2003
  • Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multi-step grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multi-step grouting was evaluated by simultaneously considering two factors: one is the effective stress acting on the tunnel face calculated by limit theorem and limit equilibrium method; the other is the seepage force obtained by means of numerical analysis. The study revealed that the influence of the steel pipe-reinforced multi-step grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage force acting on the tunnel face.

  • PDF

침투력이 터널 막장의 안정성에 미치는 영향 연구 - 모형실험을 중심으로 - (Effect of Seepage Forces on the Tunnel Face Stability - Assessing through Model Tests -)

  • 이인모;안재훈;남석우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.41-48
    • /
    • 2001
  • In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.

  • PDF

Stability analysis of slopes under groundwater seepage and application of charts for optimization of drainage design

  • Deng, Dong-ping;Lia, Liang;Zhao, Lian-heng
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.181-194
    • /
    • 2019
  • Due to the seepage of groundwater, the resisting force of slopes decreases and the sliding force increases, resulting in significantly reduced slope stability. The instability of most natural slopes is closely related to the influence of groundwater. Therefore, it is important to study slope stability under groundwater seepage conditions. Thus, using a simplified seepage model of groundwater combined with the analysis of stresses on the slip surface, the limit equilibrium (LE) analytical solutions for two- and three-dimensional slope stability under groundwater seepage are deduced in this work. Meanwhile, the general nonlinear Mohr-Coulomb (M-C) strength criterion is adopted to describe the shear failure of a slope. By comparing the results with the traditional LE methods on slope examples, the feasibility of the proposed method is verified. In contrast to traditional LE methods, the proposed method is more suitable for analyzing slope stability under complex conditions. In addition, to facilitate the optimization of drainage design in the slope, stability charts are drawn for slopes with different groundwater tables. Furthermore, the study concluded that: (1) when the hydraulic gradient of groundwater is small, the effect on slope stability is also small for a change in the groundwater table; and (2) compared with a slope without a groundwater table, a slope with a groundwater table has a larger failure range under groundwater seepage.

정상류 조건하의 토사터널의 해석 및 설계 (Analysis and Design of Soft Ground Tunnels Subject to Steady-State Groundwater Flow)

  • 이인모;남석우;이명재
    • 한국지반공학회지:지반
    • /
    • 제10권2호
    • /
    • pp.41-56
    • /
    • 1994
  • 지하수위 하에서 터널이 시공될 경우, 터널막장은 시공 중 용수에 의한 영향을 받게 되며 지보 System은 시공 후 지하수 흐름이 문제시 될 수 있다. 븐 연구는 터널막장 및 라이닝에 대해 배수조건에 따른 지하수 흐름을 고려한 적절한 해석 및 설계방법을 제시하고 있다. 첫째, 시공 완료 후 터널 라이닝이 배수조건에 따라 받게 되는 지하수의 영향을 라이닝에 작용하는 응력 및 변위로써 검토하고 각 배수조건별로 적절한 해석 및 설계방법을 제안하였다. 둘째, 시공 중 굴착에 의한 지하수의 흐름이 문제가 되는 터널막장에 대해서 지하수 흐름의 3 차원 모델링을 수행하였으며, 그 결과를 막장의 안정성에 대한 이론적 검토에 반영하여 침투력이 막장의 안정성 미치는 영향에 대하여 검토하였다. 또한 막장을 평면변형률조건(plane strain condition)으로 모델링 하여 침투 고려시와 지하수의 미고려시에 막장면에 작용하는 응력 및 변위를 산출하여 침투력이 막장면에 미치는 영향을 검토하였다. 연구 결과, 터널 시공시 지하굴착 및 배수에 의한 지하수위 저하가 크지 않은 구간에서 터널막 장은 정상류 흐름에 의한 침투력을 고려한 적절한 안정대책이 요구되며, 터널 라이닝 또한 침투를 고려한 배수개념이나 내부 라이닝이 정수압을 견뎌야 하는 비배수 개념에 의해 설계 및 시공이 이루어져야 함을 보여준다.

  • PDF

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.145-157
    • /
    • 2023
  • This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.