• Title/Summary/Keyword: Seedling quality

Search Result 347, Processing Time 0.032 seconds

The Effect of Renewal Topworking on Early Y Shape Tree Formation and Yields in Peach Trees (고접갱신이 복숭아 Y자 수형 조기 구성 및 생산성에 미치는 영향)

  • Yoon, Ik Koo;Yun, Seok Kyu;Jun, Ji Hae;Nam, Eun Young;Kwon, Jung Hyun;Bae, Hae Jin;Chung, Kyeong Ho;Moon, Byung Woo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.366-370
    • /
    • 2013
  • The effects of the early tree shapes with renewal by top-working on Y-shaped peach tree, and the influence on the maintaining fruit quantity with gradual renewal of interstock cultivar were determined. In the comparison of the places of top-working tree, top working tree on the inside of the main branch of interstock cultivar had higher graft union rate and branch growth than those of top working tree on the outside. Tree width, basal diameter of shoot, and number of bearing shoots were smaller in top working tree than in replanted tree. Although labor time was not different to control top working tree and replanted tree, labor time was much required to manage top working tree with interstock cultivar. Accumulated fruit production was 2,384 kg/10a in top working tree and 2,025 kg/10a in replanted tree for three years. However, top working tree had no loss of fruits because interstock cultivar of top-working tree had 3,727 kg/10a of fruits. No variation on fruit quality was observed between top working tree and replanting tree. In terms of economic value of top-working tree, labor to manage interstock cultivar, fertilizer price, fruit bagging, and grading and packing price increased. However, fruit production increased, and price of seedling, rental equipment, pulling-out trees, and repairing supporting system decreased. Therefore, gradual renewal of topworking tree has effects on the maintaining fruit quantity, supplementation on fruit loss, and renewal cultivar.

An Experimental Study on Pearl Oyster (Pinctada fucata) Culture (인공진주 양식에 관한 시험연구)

  • CHO Chang-Hwan;KWON Woo-Seop;KIM Moo-Sang;KIM Nam-Gil;LIM Dong-Taik
    • Journal of Aquaculture
    • /
    • v.1 no.1
    • /
    • pp.85-102
    • /
    • 1988
  • An experimental study on seedling production and wintering to develop pearl oyster, Pinctada fucata culture in Korea was carried out. from December 1986 to November 1988 in waters of Kori and of Seogwipo as wintering and of Eogu as culturing grounds. All pearl oysters as the sample were imported from Japan. The highest water temperature at Eogu was $23.6^{\circ}C$ in August and the lowest at Kori and Seogwipo were $13.2^{\circ}C$ and $14.0^{\circ}C$c in February, respectively, Phytoplankton was relatively plentiful but mortality of pearl oysters was $20.5\%$, which was twice at Seogwipo, due to high amount of suspended muds. It shows that Seogwipo is better wintering ground even though the amount of phytoplankton is lower than Kori. Average rates of pearl production after 6-months and 15-months period were $58.2\%$ and $48.3\%$ respecitively. Thickness of pearl layer and coating rate were also satisfactory. More than half of the pearls produced was so-called the pink-pearl, the best colour. About $10\%$ of them was the best quality. There were three peaks of D-shape larvae from July to September and it took about one month for D-shape larvae to become seed-shells. Settling was satisfactory and most of them settled at 1$\~$3 m layer and the best was 2 m-layer. Success of settling was supposed due to high water temperature and low precipitation than the normal year.

  • PDF

Effect of LED Light Intensity on Seedling Quality and Tuber Production of Potato Stem Cuttings Grown in a Closed-Type Plant Production System (폐쇄형식물생산시스템을 이용한 감자 경삽묘 육묘시 묘소질과 괴경 생산에 대한 LED 광도의 영향)

  • Jo, Man Hyun;Ham, In Ki;Park, Kwon Seo;Cho, Ji Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.468-476
    • /
    • 2020
  • This study was performed to establish light intensity conditions for producing stem cuttings for aeroponic systems suitable for seed potato production using a closed-type plant production system. Shoot tip cultured plantlets of 'Sumi' and 'Chubaek' potato (Solanum tuberosum L.) were acclimatized, cuttings were collected, and stem cuttings were planted. The seedlings were raised for 40 days at different LED light intensities (60, 120, 180, and 240 μmol·m-2·s-1), and were cultivated in an aeroponic system for 80 days. When stem cuttings were raised at 60 μmol·m-2·s-1 LED light intensity, the plant height was the longest, at 17.3 cm for 'Sumi' and 16.1 cm for 'Chubaek', and the number of nodes was the highest in both cultivars. The higher light intensities, produced smaller plants with fewer nodes. The leaf areas, SPAD values, and Fv/Fm values differed slightly between cultivars. The fresh weight of stem cuttings, and the production rate of healthy stem cuttings were the highest at 60 μmol·m-2·s-1. In the aeroponic system, seedlings raised at 60 μmol·m-2·s-1 with LED light intensity showed a difference between the cultivars, but the fresh weight of stems and leaves above the planting plate was the heaviest. In addition, below the planting plate the stem cuttings were longest and the root weight was heaviest at 60 μmol·m-2·s-1 LED light intensity. The number of stolons also differed between cultivars, but was greatest for seedlings raised at 60 μmol·m-2·s-1 LED light intensity, at 4.2/plant for 'Sumi' and 7.7/plant for 'Chubaek'. At 60 μmol·m-2·s-1 LED light intensity, the tuber number and total tuber weight were the best, but the higher the light intensity, the smaller the total tuber number and total tuber weight for both cultivars. In conclusion, when producing potato stem cuttings for aeroponic systems using a closed-type plant production system, the most suitable LED light intensity for raising seedlings was found to be 60 μmol·m-2·s-1.

Response of the Growth Characteristics and Phytochemical Contents of Pepper (Capsicum annuum L.) Seedlings with Supplemental LED Light in Glass House (LED 보광처리가 고추(Capsicum annuum) 묘의 생장과 Phytochemical 함량에 미치는 영향)

  • Azad, Md. Obyedul Kalam;Chun, Ik-Jo;Jeong, Jeong-Hak;Kwon, Soon-Tae;Hwang, Jae-Moon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.182-188
    • /
    • 2011
  • This research was conducted to evaluate the effect of supplemental light-emitting diode (LED) light on growth characteristics and phytochemical content of pepper (Capsicum annuum L.) seedling using LED blue (470 nm, B), red (660 nm, R), blue + red (BR), far red (740 nm, FR) and UV-B (300 nm) light treatment, and without artificial light. Photon flux of LED light was 49, 16, 40, 5.0 and $0.82{\mu}mol\;m^{-2}s^{-1}$ for B, R, BR, FR, and UV-B light, respectively, during experiment. Supplemental LED light duration was $16hr\;day^{-1}$ and UV-B light duration was 10 min. per day after sunset up to 15 days (12 days after germination) of plants age. In our research, growth characteristics and phytochemical content of pepper seedlings were greatly influenced by supplemental LED light compare to control treatment. Red light increased the number of leaves, number of nodes, leaf width and plant fresh weight by 34%, 27%, 50% and 40%, respectively. Blue light increased the leaf length by 13%, and stem length and length of inter node were increased by 17% and 34%, respectively under grown far red light. After 15 days of light treatments phytochemical concentrations of pepper plants were significantly changed. Blue light enhanced the total anthocyanin and chlorophyll concentration by 6 times and 2 times, respectively. Red light increased the total phenolic compound at least two folds meanwhile far red light reduced the ascorbic acid and antioxidant activity 31% and 66%, respectively compared to control treatment.

Analysis of Year-round Cultivation Characteristics of Artemisia princeps in Greenhouse and Enhancement of Eupathilin Content by Environmental Stress (강화쑥의 온실 주년 재배 특성 분석 및 환경 처리를 통한 유파틸린 성분 증대)

  • Kang, Woo Hyun;Han, Zeesoo;Lee, Seung Jun;Shin, Jong Hwa;Ahn, Tae In;Lee, Joo Young;Kang, Suk Woo;Jung, Sang Hoon;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2018
  • Mugwort (Artemisia princeps) is a medicinal plant that has a substance called euphatilin, which is effective for cell damage and gastritis recovery. The objectives of this study were to investigate the annual growth characteristics of Artemisia princeps in greenhouse and to increase the eupatiline content by environmental stresses. Growth and eupatilin content of the plants were compared after 6 weeks of seedling and subsequent 8 weeks of greenhouse cultivation. Photosynthesis of mugwort plants did not saturate even at a relatively high light intensity of $1,200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Growth rate of the plants reached its highest at two weeks after transplanting and began to decrease since 8 weeks after transplanting. The plants showed typical characteristics of a perennial herbaceous plant as they were sensitive to seasonal changes. In particular, the plants showed high growth and eupatilin content in spring and summer as vegetative growth periods, but flowering and wintering caused considerable decreases in growth and eupatilin content in fall and winter. Therefore, application of night interruption is essential for year-round cultivationof the plant. Two stresses and a elicitor were treated: drought stresses by stopping irrigation at 5, 6, 7, and 8 days before harvest; salt stresses with nutrient solution concentrations of 2, 4, 6, 8, and $10dS{\cdot}m^{-1}$ by adding sodium chloride at 3 days before harvest; and foliar applications of methyl jasmonates of 12.5, 25, 50, and $100{\mu}M$ at 3 days before harvest. Significant increase in eupatilin content was observed at drought stresses of 7- and 8-days of irrigation stop and foliar application of $25{\mu}M$ methyl jasmonate, while no significant increase observed at salt stresses. From the results, it was confirmed that the environmental treatments can improve the productivity and quality of Artemisia princeps as a phamaceutical raw material.

Medium Depths and Fixation Dates of 'Seolhyang' Strawberry Runner Plantlets in Nursery Field Influence the Seedling Quality and Early Growth after Transplanting (차근육묘를 위한 배지의 깊이 및 착근 시기가 '설향' 딸기 자묘 소질과 정식 후 초기 생장에 미치는 영향)

  • Park, Gab Soon;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.518-524
    • /
    • 2015
  • The objective of this research was to investigate the influence of various depths of expanded rice hull (ERH) medium and fixation dates of runner plantlets of 'Seolhyang' strawberry on the growths in nursery field and in plastic house soil after transplanting. The five treatments in medium depths (30, 50, 70, 90, and 110 mm) and four treatments in fixation dates (1st and 15th July and 1st and 15th August) were tested. The growths of runner plantlets were investigated before transplanting to plastic house soil. The early growth and inflorescence rates of crops after transplant to plastic house soil were also investigated. The plant height and fresh weight of runner plantlets were the highest in the medium depths of 50, 70, and 90 mm. The medium depth of 30 mm had higher numbers of first roots, but lower root fresh weight compared to those of 70, 90, and 110 mm. The treatment of 30 mm in medium depth showed poorer growth in all indexes except root length and root weight compared to those of 70, 90, and 110 mm. The runner plantlets fixed on July 1 and July 15 showed good root growth and the weights of ERH adhered to form root balls were 18.3 g and 13.9 g, respectively. The detached amount of ERH was less than 40% in the two treatments when root balls were shaken by a vibratory sieve shaker. The plant growth at 45 days after transplanting to plastic house soil were not significantly different when the runner plantlets were fixed in the period from July 1 to Aug. 1. The inflorescence rates of the first cluster were 93 to 100% when runner plantlets were fixed in the period from July 1 to Aug. 1. By contrast the runner plantlets fixed on the Aug. 15 had a 67% in florescence rate for the first cluster. These results indicate that optimum depth of ERH medium was 7 cm and the ranges of optimum fixation dates are from July 20 to 25.

Optimum Nutrient Solution Strength for Korean Strawberry Cultivar 'Daewang' during Seedling Period (국내 육성 신품종 딸기 '대왕'의 육묘기 적정 배양액 농도)

  • Jun, Ha Joon;Jeon, Eui Hwan;Kang, Soo In;Bae, Geun Hye
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.812-818
    • /
    • 2014
  • Raising seedlings is important for fruit crops and is especially significant for strawberries as it accounts for 80% of their cultivation. However, there are few studies on raising seedlings of strawberries by hydroponics. Since strawberries show clear differences in growth characteristics based on cultivar, it is necessary to develop suitable fertilizer formula, concentration and pH for each cultivar, and also to examine the amount of nutrient feeding appropriate for each medium type. A key to raising seedlings of strawberries by hydroponics is the development of strategies to manage the concentration of nutrient solution. The mother plants of 'Daewang' strawberries were planted on hydroponics benches filled with cocopeat on March 28, 2012. Three nutrient solution treatments were employed during the term of raising seedlings: a type that supplied EC $0.6dS{\cdot}m^{-1}$ nutrient solution for 30 days and only water for 20 days [0.6 (30) + 20]; a type that supplied EC $1.2dS{\cdot}m^{-1}$ nutrient solution for 30 days and only water for 20 days [1.2 (30) + 20]; and a type that supplied EC $1.2dS{\cdot}m^{-1}$ nutrient solution for 50 days [1.2 (50)]. The plants were then planted on hydroponics benches filled with cocopeat on September 20, and managed with EC $0.6-0.8dS{\cdot}m^{-1}$ strawberry nutrient solution developed by Yamazaki. After planting, shoot growth, flowering rate and fruit quality of the first cluster were investigated. The petiole length, leaf length, leaf width and crown diameter showed the highest grown in the [1.2 (50)] treatment, followed by [1.2 (30) + 20], and then [0.6 (30) + 20], indicating that the higher concentration of nutrient solution was preferable for raising seedlings. However, the growth differences among treatments gradually disappeared as growth continued, and the crown diameter especially grew to exhibit almost no difference at all among treatments. The point of flowering came first in [0.6 (30) + 20], followed by [1.2 (30) + 20] and then [1.2 (50)]. The [0.6 (30) + 20] treatment showed much earlier flowering than other treatments, which implies that low-concentration nutrient solution may be beneficial to the flowering of 'Daewang' strawberries while raising seedlings. There was no statistically significant difference among treatments in fruit length, fruit diameter and fruit firmness. Fruit weight in [1.2 (50)] treatment was significantly higher than other treatments. However, soluble solids of fruit was the lowest in [1.2 (50)] treatment. Together, the results of this experiment imply that it is better to supply EC $0.6dS{\cdot}m^{-1}$ solution for 30 days and then supply only water for 20 days to adequately manage concentration of nutrient solutions during the period of raising seedlings of strawberries by hydroponics.

Effect of Nursery Stage and Plug Cell Size on Growth and Yield of Waxy Corn (이식재배가 찰옥수수 생육 및 수량에 미치는 영향)

  • Kim, Sung-Kook;Jung, Tae-Wook;Lee, Yu-Yong;Song, Duk-Yong;Yu, Hong-Seob;Lee, Choon-Woo;Kim, Yee-Gi;Lee, Jae-Eun;Kwak, Chang-Gil;Jong, Seung-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • Comprehensive studies on seedling production and transplanting cultivation of waxy corn are necessary to fulfill the comsumer's preference for the high quality whole ear waxy corn and its year-round supply for higher price, and to escape marketing in a short period at harvest season. Two waxy corn hybrids (cv. Chalok# 1 and Chalok# 4) were used to study the effects of seeding date, nursery days and plug cell size on growth and yield of waxy corn, and to clarify the reliable transplanting date at the Experimental Field of the National Institute of Crop Science in 2007. The number of days from seeding to silking was increased as nursery days were extended, but the number of days from transplanting to silking was shortened comparing to the direct seeding. Number of days from seeding to silking was shorter by 9~12 days for Chalok# 1 than for Chalok# 4, while the number of days from seeding to silking was shorter by 12~15 days in the second cropping than in the first cropping. Culm length of transplanted waxy corns was decreased as the nursery days were extended. Culm length of seeded Chaok# 1 and Chaok# 4 were decreased by 17% and 24%, respectively, in the second cropping compared to those in the first cropping. Ear length was somewhat decreased as the nursery days were extended. Chalok# 1 in the second cropping the degree of decrease was much higher in second cropping than in first cropping of Chalok# 1. Comparing to the first cropping, number of marketable ears per 10a of Chalok# 1 decreased as high as 64%, while that of seeded Chalok# 4 decreased mere 12% in the second cropping.

Effect of Nursery Period on the Growth and Yield of Green Papaya (Carica papaya) Production under Non-Heated Greenhouse (청과용 파파야 무가온 생산시 육묘기간이 생육특성 및 수량에 미치는 영향)

  • Seong, Ki-Cheol;Kim, Chun Hwan;Jeong, Yong Bin;Lim, Chan Gyu;Moon, Doo Kyong
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.212-217
    • /
    • 2016
  • This study was conducted to investigate the effect of nursery period on growth and yield attribute of green papaya (var. Red lady). The nursery period was 3, 5, 7, 9, 11 and 13 months and the green papaya was transplanted on 15 April, 2015 in a non-heated greenhouse. The plant height, node number and fresh weight of nursery plant were increased as the nursery periods increased. The growth of green papaya with 13 months nursery period was better than those of other treatments. First harvest after transplanting was increased as the nursery periods were shorten. It took 137 days (18 August) at 13 months treatment, and 184 days (2 October) at 3 months treatment. The fruit length and diameter were smallest at 3 months treatment and there was no significant difference among other treatments. The fruit yield was also influenced by the nursery periods, the commercial yield was also increased as the nursery periods increased. The commercial yield was highest at 13 months treatment (3,172kg/10a), followed by 11 (2,247kg/10a) and 9 months treatment (2,357kg/10a). At 7 and 5 months treatment were 1,942kg/10a and 1,787kg/10a, respectively and the yield was lowest at 3 months treatment (1,443kg/10a). The commercial yield was significantly decreased under 7 months treatment. Although the harvest time of 11 months treatment was earlier than that of other treatments in non-heated greenhouse, 9 month treatment will be more recommendable for green papaya production because of operating costs.

Gibberellin Application Method and Concentration Affect to Growth, Runner, and Daughter Plant Production in 'Maehyang' Strawberry during Nursery Period (육묘기 '매향' 딸기의 생육, 런너 및 자묘 생산에 미치는 지베렐린 처리방법 및 농도의 영향)

  • Kang, Jae Hyeon;Kim, Hyeon Min;Kim, Hye Min;Jeong, Hyeon Woo;Lee, Hye Ri;Hwang, Hee Sung;Jeong, Byoung Ryong;Kang, Nam Jun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2018
  • This study was aimed to evaluate the effect of application method and concentration of gibberellin $A_3$ ($GA_3$) on the growth, runner production, and seedling quality of strawberry plants (Fragaria ${\times}$ ananassa Duch. cv. Maehyang) during nursery period. The mother plants of strawberry were transplanted in pot ($64{\times}27{\times}18cm$) filled with commercial growing medium on March 20, 2018. $GA_3$ concentration was applied as 0, 50, 100 or $200mg{\cdot}L^{-1}$ with spray or drench to 45 mL per plant at 4 weeks after transplanting, respectively. Nutrient solution was supplied with the EC $1.5dS{\cdot}m^{-1}$ after the transplanting and supplied 350 mL per pot twice a day (15 min per one time) after rooting. The growth characteristics of mother plants of strawberry were measured at 7 weeks after treatment, and growth characteristics of daughter plants of strawberry were measured at 10 weeks after treatment. Runner length and diameter of mother plant was the longest or thickest in the spray with $200mg{\cdot}L^{-1}$ than the other treatments, respectively. Soil-plant analysis development (SPAD) value of mother plant was the lowest in spray with $200mg{\cdot}L^{-1}$. However, leaf length, leaf width, and crown diameter showed no significant differences in all treatment among application method and concentration of $GA_3$. As the concentration of $GA_3$ increased, physiological disorder like stretchiness of crown occurred more. The physiological disorder was the most occurred in spray treatment with $200mg{\cdot}L^{-1}$, but drench treatment occurred less than spray treatment. The number of runners and daughter plants increased with increasing concentration of $GA_3$ regardless of application methods. In the growth characteristics of the daughter plants, leaf length and leaf width of first daughter plant, plant height, crown diameter, leaf area and SPAD value of second daughter plant, and plant height of third daughter plant were the significantly greatest in drench with $100mg{\cdot}L^{-1}$ treatment. This results indicate that growth and runner production of mother plants and growth of daughter plants of strawberry were the best achieved by drench application in the $100mg{\cdot}L^{-1}$ $GA_3$.