• Title/Summary/Keyword: Seedling Period

Search Result 307, Processing Time 0.024 seconds

Effect of Seedling Age on Growth and Yield at Transplanting of Sorghum (Sorghum bicolor L. Moench) (수수 묘의 이식 시기가 생육 및 수량에 미치는 영향)

  • Jo, Su-Min;Jung, Ki-Youl;Kang, Hang-Won;Choi, Young-Dae;Lee, Jae-Saeng;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.50-56
    • /
    • 2016
  • Direct seeding of sorghum (Sorghum bicolor L. Moench) has a problem of low yield including poor establishment. This poor establishment results from poor quality seed, poor seedbed preparation, seedling pests, poor sowing technique and high soil temperature. This study sought to establish the age at which sorghum seedlings can be transplanted with minimal effects on grain yield. Transplants were raised in 128 nursery tray pot. Five seedling ages were established by transplanting at 10 (T10), 15 (T15), 20 (T20), 25 (T25) and 30 (T30) days after planting (DAP). The treatment combinations were arranged in a randomized complete block design and replicated three times with an individual plot size of $6{\times}5m^2$. Each plot had five ridges with a planting space of $0.60{\times}0.20m^2$ at one plants per stand. Results showed that seedling age on transplanting significantly affected growths and yields to sorghum after transplanting. Plant heights and diameters of transplants at T15 were longer than the other transplants. Conclusively, The advantages of this practice were better control of crop density and greater yields; either to fill gaps after emerging and thinning of crops or to compensate for a growth period that was too short for a complete crop cycle.

Effects of Refrigerated Storage Temperature and Duration on the Seedling Quality of Bare Root Plants and Container Seedlings of Quercus variabilis and Zelkova serrata (저장 온도 및 기간이 굴참나무와 느티나무 노지묘 및 용기묘의 묘목품질에 미치는 영향)

  • Cho, Min Seok;Yang, A-Ram;Noh, Nam Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.406-418
    • /
    • 2021
  • This study was conducted to evaluate optimal storage techniques for bare root plants and container seedlings of Quercus variabilis and Zelkova serrata in order to maintain high quality of seedlings until planting. Refrigerated storage treatments were given at two temperatures (-2℃ [freezing] and 2℃ [cooling]) for nine different durations (0, 15, 30, 60, 120, 180, 240, 300, and 360 days after storage). We analyzed total nonstructural carbohydrate (TNC) content and measured shoot moisture content (SMC) during the storage stage and survival rate (SR) and dry weight during the planting stage of seedlings. The TNC content and SMC of the seedlings of the two species decreased with an increase in storage duration. The TNC content of seedlings rapidly decreased after 180~240 days of storage. The TNC reduction rate in the freezing treatment was lower than that in the cooling treatment. Also, with an increase in the storage duration of the two species, the SMC reduction rate in the cooling treatment increased in comparison with that in the freezing treatment. In both the species, the SR after planting decreased rapidly after 60 days of cooling storage and 180 days of freezing storage, respectively. The SR after planting was less than 60% when the TNC content for both the species dropped below 20 mg g-1. In addition, the SR was lower than 80% when SMC measured before storage decreased by approximately 30% and 20% for Q. variabilis and Z. serrata, respectively. Our results suggest that cooling (1~2℃) storage is recommended for a short-term period (2 months or less), whereas freezing (-2~-4℃) storage is suitable for longer periods (2~6 months). These optimal storage techniques, allied with seedling harvesting and handling systems, will improve the quality of seedling production in nursery stages and increase seedling growth performances in plantations.

Growth and Yield in Early Seasonal Cultivation for Rice Double Cropping in Southern Korean Paddy Field (벼 2기작 재배를 위한 조기재배 환경에서 벼 생육 및 수량변화)

  • Ku, Bon-Il;Choi, Min-Kyu;Kang, Shin-Ku;Park, Tae-Seon;Kim, Young-Doo;Park, Hong-Kyu;Ko, Jae-Kwon;Lee, Byun-woo
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.520-530
    • /
    • 2011
  • This study was carried out to evaluate the possibility of rice double cropping in Korea by assessing the growth and yield performance of rice cultivars transplanted at the extremely-early date. When the transplanted rice seedling was exposed to low temperature below 0℃, the survival rate decreased drastically. However, short exposure to below 0℃ one or two times did not damage transplanted rice seedling so severely. Thus, the earliest transplanting in spring would be possible when minimum temperature rises above 0℃. Compared with the conventional seedling nursery tray (CSNT), seedling rearing with the potted nursery tray was more effective for increasing leaf age and seedling dry weight during nursery period. In the first rice cropping, rice cultivation with seedlings reared in PSNT showed shorter growth duration and cumulative temperature from transplanting to heading than that with seedlings reared in CSNT. The earliest heading date on July 4 in Jinbuolbyeo was earlier by two to three days than that of Dunaebyeo. If rice has not exposed to cold damage, the earliest heading date of Jinbujolbyeo can advance to June 30 or July 1. In this case, rice harvest would be possible on August 5, enabling the rice transplanting of the second rice cropping before August 10. At transplanting time with low temperature damage rice yield were less than 400 kg/10a while rice yield exceeded 400 kg/10a at transplanting time without low temperature damage.

Changes in Soil Physiochemcial Properties Over 11 Years in Larix kaempferi Stands Planted in Larix kaempferi and Pinus rigida Clear-Cut Sites (낙엽송과 리기다소나무 벌채지에 조성된 낙엽송 임분의 11년간 토양 물리·화학적 특성 변화)

  • Nam Jin Noh;Seung-hyun Han;Sang-tae Lee;Min Seok Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.502-514
    • /
    • 2023
  • This study was conducted to understand the long-term changes in soil physiochemical properties and seedling growth in Larix kaempferi (larch) stands planted in clear-cut larch and Pinus rigida (pine) forest soils over an 11-year period after reforestation. Two-year-old bare-root larch seedlings were planted in 2009-2010 at a density of 3,000 seedlings ha-1 in clear-cut areas that harvested larch (Chuncheon and Gimcheon) and pine (Wonju and Gapyeong) stands. We analyzed the physiochemical properties of the mineral soils sampled at 0-20 cm soil depths in the planting year, and the 3rd, 7thand 11th years after planting, and we measured seedling height and root collar diameter in those years. We found significant differences in soil silt and clay content, total carbon and nitrogen concentration, available phosphorus, and cation exchangeable capacity between the two stands; however, seedling growth did not differ. The mineral soil was more fertile in Gimcheon than in the other plantations, while early seedling growth was greatest in Gapyeong. The seedling height and diameter at 11 years after planting were largest in Wonju (1,028 tree ha-1) and Chuncheon (1,359 tree ha-1) due to decreases in stand density after tending the young trees. The soil properties in all plantations were similar 11 years after larch planting. In particular, the high sand content and high available phosphorus levels (caused by soil disturbance during clear-cutting and planting) showed marked decreases, potentially due to soil organic matter input and nutrient uptake, respectively. Thus, early reforestation after clear-cutting could limit nutrient leaching and contribute to soil stabilization. These results provide useful information for nutrient management of larch plantations.

Effects of Temperatures and Relative Humidities on the Development of Brown Planthopper, Nilaparvata Zugens (Stal) (온도와 습도가 벼멸구의 생육에 미치는 영향에 관한 연구)

  • Park Chung Gyoo;Hyun Jai Sun
    • Korean journal of applied entomology
    • /
    • v.22 no.4 s.57
    • /
    • pp.262-270
    • /
    • 1983
  • The newly hatched nymphs of brown planthopper(BPH) were reared individually for two generations in test tubes, where young rice seedling was planted on agar solution, at $30^{\circ}C,\;25^{\circ}C\;and\;20^{\circ}C\;with\;95\%,\;75\%,\;65\%\;and\;35\%$ R.H. Effects of $30^{\circ}C$ on the development of BPH when compared with those of $25^{\circ}C$ are followings. Egg period, nymphal period, and adult longevity were shortened. Nymphal mortality was increased and the number of oviposited eggs was decreased. Hatchability was zero per cent because the eggs were either unfertilized or died before finishing the development. At the low temperature of $20^{\circ}C$, in comparision with $25^{\circ}C$, the developmental period of nymphs and eggs was considerably lengthened, and adult longevity was shortened, the number of oviposited eggs was decreased. The nymphal mortality was higher at high relative humidity $(above\;75\%\;RH)$ than that at low relative humidity $(under\;65\%\;RH)$. Under the condition of high relative humidities, the adult longevity was shortened, and the number of oviposited eggs was decreased.

  • PDF

Physiological Character of Juvenility in Higher Plant (고등식물체에서 유년기의 생리적 특성)

  • 양덕조
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.191-211
    • /
    • 1987
  • Common usage of the concept of juvenility implies that there is one physiological phase, the juvenile phase, which manifests itself in the various morphological and physiological phenomena observed in juvenile higher plants. The juvenile phase is often defined as that time from seed germination until the plant attains the ability to flower regulating such behaviour. This definition precludes plants from flowering in the juvenile phase. It is of major interest, therefore, to identify the physiological controls(Bluehreife) regulating such behavior. The length of the juvenile period in higher plants ranges from one year to over 60 years in different species. The long juvenile period of seedling is the main cause of the long duration of the breeding process. I determined the length of the juvenile period in various plants and its control of phase changes in natural system in relation to factors such as plant size and age, shoot morphology, apex size, root system and phytohormonal and nutritional status is reviewed. From the own experimental and observational evidence available it appears that both hormonal and nutritional factors can be involved in control of juvenility but that a specific juvenile or flowering hormone is not involved. Grafting, ringing, scoring, root pruning and fertilization have been used to accelerate flowering, but in most cases these cultured treatments are only successful on plants that were passed the juvenile phase. It is suggested that there are intrinsic difference between the meristematic cells of the apieces of juvenile and adult shoot, which are thus determined with respect to there development potentialities. The problems associated with the maintenance of the determined state through mitosis are discussed. The properties of transitional forms of Ribes nigrum L. intermediate between the juvenile and adult phase, are descrived and there implications discussed. Analogies are drawn between juvenile phenomena in woody perennials and in herbaceous species.

  • PDF

Determination of the Temperature Increasing Value of Seedling Nursery Period for Oryza2000 Model to Applicate Grid Weather Data (Oryza2000 모형 활용을 위한 육묘기 보온 상승온도 결정)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Kwon, Dongwon;Lee, Yunho;Cho, Jung-Il;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • Spatial simulation of crop growth often requires application of management conditions to each cell. In particular, it is of great importance to determine the temperature conditions during the nursery period for rice seedlings, which would affect heading date projections. The objective of this study was to determine the value of TMPSB, which is the parameter of ORYZA2000 model to represent temperature increase under a plastic tunnel during the rice seedling periods. Candidate values of TMPSB including 0℃, 2℃, 5℃, 7℃ and 9℃ were used to simulate rice growth and yield. Planting dates were set from mid-April to mid-June. The simulations were performed at four sites including Cheorwon, Suwon, Seosan, and Gwangju where climate conditions at rice fields common in Korea can be represented. It was found that the TMPSB values of 0℃ and 2℃ resulted in a large variation of heading date due to low temperature occurred in mid-April. When the TMPSB value was >7℃, the variation of heading date was relatively small. Still, the TMPSB value of 5℃ resulted in the least variation of heading date for all the planting dates. Our results suggested that the TMPSB value of 5℃ would help reasonable assessment of climate change impact on rice production when high resolution gridded weather data are used as inputs to ORYZA2000 model over South Korea.

EFFECT OF NITROGEN AND AGE OF ALFALFA (Medicago sativa L. ) SEEDING ON GROWTH AND NODULATION WHEN GROWN UNDER A HOT ENVIRONMENT (고온하에서 질소시비가 근류균을 접종한 Alfalfa의 생육부위에 미치는 영향에 관하여)

  • ;E. H. Jensen
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.1
    • /
    • pp.25-30
    • /
    • 1987
  • There are differences in opinion as to whether nitrogen fertilizer should be used when establishing alfalfa (Medicago sativa L.). Various reports show that under a hot environment, rhizobia (Rhizobium meliloti) are not as effective in fixing atmospheric nitrogen as they are under moderate temperatures. It is also believed that the addition of nitrogen fertilizer inhibits nodulation of alfalfa seedlings. A replicated experiment was conducted under controlled environmental conditions at the University of Nevada-Reno, Reno, Nevada, USA, to determine the effects of nitrogen application on seedling growth and nodulation of alfalfa grown in a hot environment. Sterile sand was used as the growing media to which a complete nutrient solution minus nitrogen was applied volumetrically to each pot daily. In addition, half of the pots received NH4-$NO_3$, at the rate of 11.2 kg per ha at seeding and at two and four weeks after planting giving a total nitrogen application rate of 33.6 kg per ha during the seven-week experimental period. Rhizobia inoculant (R-12) consisted of a mixture of strains 171-15a, 1682c and 80 PI 265 of (Rhizobium meliloti). Inoculant was applied to the seeds prior to planting and to the sand media at two and four weeks after seeding. Twenty seeds were planted in pots 14.0 cm in diameter and 11.5 cm deep. Plants were thinned to ten plants per pot after emergence and were grown in a controlled environment chamber with a 16-hour light period. Soil temperature at 6 cm depth ranged from 17.4^{\circ}C.$ to 31.1^{\circ}C.$ and had a daily mean of 26.5^{\circ}C.$. Plants were harvested at weekly intervals for seven weeks. Root, shoot and total length, dry weight, volume and number of nodules per plant were determined. Root, shoot, and total length were greater in seedlings grown in soil where nigrogen was applied than that grown in soil to which no nitrogen was applied. The average size of the seedlings as determined by volume and weight was more than two times greater where plants were fertilized with nitrogen. Nodule number per seedling was also greater when nitrogen was applied compared to those which received no nitrogen. The differences were greater as the plants became older. The rhizobia did not fix enough nitrogen for adequate growth of seedlings. This is probably due to high temperature growing conditions that caused the rhizobia to become relatively ineffective as compared to cooler growing conditions. Data suggests it would be desirable to apply nitrogen at seeding when alfalfa is established under hot conditions that occur in mid- or late summer.

  • PDF

Effects of Soil Water Content on Growth and Antioxidative Enzymes of Tomato Plug Seedlings (토양 수분함량이 토마토 묘의 생육 및 항산화 효소에 미치는 영향)

  • Kim, D.E.;Kang, J.K.;Shin, Y.A.;Hong, S.J.;Lee, W.Y.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.2
    • /
    • pp.59-69
    • /
    • 2019
  • This study was carried out to investigate effects of soil water content on growth and antioxidative enzymes activity of tomato seedlings during the nursery period. The water stress significantly damages morphological, physiological, and biochemical activities in plants. The seedlings planted with soil on the tray were irrigated and categorized into 3 groups with 30 g, 40 g, and 50 g of plant-soil weight. After then, the changes in weight of the soil and the seedling were measured evey 2 hours for 4 days and the leaf temperature was measured with the thermal-camera at the same time. The antioxidant enzymes were measured to determine the level of stress using all of the seedling samples. The result showed that the decrease of soil weight in the day time was faster than that in the night time, but there was no significant difference in the weight loss of the seedlings and soil among the groups. However, the group with 50 g of wight showed the highest SOD and POD contents. This is considered that the continuously wet soil on the root zone of the seedlings caused more stress for the seedlings. Therefore, it is concluded that the excess moisture content causes stress to stimulate the secretion of antioxidant enzymes, and the effect of stress is required to be analyzed comprehensively using environmental data and also the physiological data that are collected over a longer period.

Comparison of Labor Period, Work Time, and Seedling Growth in Cutting and Pinning Transplants on 'Maehyang' Strawberry ('매향' 딸기 삽목묘와 유인묘의 노동 기간, 작업 시간 및 생육 비교)

  • Hwang, Hee Sung;Jeong, Hyeon Woo;Kang, Jae Hyeon;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.257-262
    • /
    • 2021
  • The pinning method is the traditional method to produce strawberry transplants. But, cultivating the pinning transplant is a labor-intensive operation and needs a long labor period. The cutting method has been considered as an effective alternative to the pinning method, due to the relatively short labor period and works time. This study was conducted to investigate the labor period, work time, and growth between pinning and cutting methods for strawberry transplants. The 'Maehyang' strawberry was cultivated at each pinning and cutting strawberry greenhouses. The time for special works on pinning method (pinning work, elimination of mother plant, and division of daughter plant), and cutting method (cutting collection, pretreatment before storage, and cutting work) were measured. The pinning method needed 6 tasks (planting of mother plant, maintaining of mother plant, pinning work, maintaining of daughter plant, elimination of mother plant, and division of daughter plant) for 158 days, and cutting method needed 4 tasks (collection and storage of cutting, cutting work, misting, and maintaining of transplants) for 113 days to cultivate transplants for fruit. And pinning method needed more work time than the cutting method. There was no significant difference between the growth of pinning and cutting transplants. These results showed that the cutting method saved more labor period, work time than pinning during the nursery period without losing transplant quality.