• 제목/요약/키워드: Seed harvesting

검색결과 194건 처리시간 0.025초

낙엽송 톱밥배지 밀도 및 입자크기에 따른 꽃송이버섯의 재배특성 (Cultivation of Sparassis crispa on Several kinds of Medium Density and Particle Size of Sawdust-based Medium Made of Larix kaempferi)

  • 박현;유성열;가강현
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권1호
    • /
    • pp.68-74
    • /
    • 2011
  • 꽃송이버섯은 다량의 ${\beta}$-glucan을 함유하고 있어서 기능성 버섯으로 재배가 확산되고 있다. 본 연구는 재배공정의 표준화를 위한 기초연구로서, 낙엽송 톱밥배지를 대상으로 밀도와 입자 크기에 따른 균사 생장 및 생산량 차이를 검정하였다. 저밀도(0.68~0.72 g/$cm^3$)의 톱밥배지에서 균사 생장의 변이계수는 초기에 40%를 초과하는 높은 값을 나타내었다가 7주차 이후에는 10% 이내로 줄어들었다. 반면, 고밀도(0.80 g/$cm^3$)의 경우에는 초기에도 상대적으로 낮은 30% 수준의 변이계수를 나타내며 안정적인 모습을 보였다. 생산량에서는 상품성이 높은 꽃 부분의 회수율을 측정한 결과 0.80 g/$cm^3$은 12.2%, 0.76 g/$cm^3$은 13.6%, 0.72 g/$cm^3$은 13.1%, 그리고 0.68 g/$cm^3$은 12.0%로 환산되어 0.76 g/$cm^3$가 가장 유리한 것으로 판단되었다. 한편, 1 mm 이하의 톱밥을 배제한 경우에는 원기 형성 후 자실체 수확까지 40일 정도 소요되지만, 1 mm 이하의 톱밥이 섞일 경우는 70일이 소요되었다. 또한 생산량에 있어서도, 꽃 부분만을 고려하면 1 mm 이하의 입자를 포함한 경우에는 다른 처리에 비하여 생산량이 적은 것을 확인할 수 있었다. 따라서 낙엽송 톱밥을 이용하여 꽃송이버섯을 재배하기 위해서는 1 mm 이하의 톱밥은 제외하고, 0.76 g/$cm^3$의 밀도로 배지를 조제하여 사용하는 것을 권장한다.

시비량과 재식밀도 변화에 따른 '눈큰흑찰'의 품질 및 수량변화 (Effects of Different Nitrogen Levels and Planting Densities on the Quality and Quantity of 'Nunkeunheugchal' Rice)

  • 배현경;오성환;서종호;황정동;김상열;오명규
    • 한국작물학회지
    • /
    • 제62권2호
    • /
    • pp.118-123
    • /
    • 2017
  • 본 실험은 거대배 흑미 품종인 눈큰흑찰의 효과적인 재배를 위한 적정질소시비량과 적정재식밀도를 구명하고자 2013년~2015년에 밀양에서 실시하였다. 1. 질소시비량이 0 kg/10a에서 8 kg/10a까지 증가하면 주당수수와 수당립수가 증가하여 현미수량이 증가하였지만 8 kg/10a에서 12 kg/10a까지 증가하여도 수량의 변화는 없었다. 회귀분석을 통해 얻어진 눈큰흑찰의 최대현미수량을 위한 적정 질소시비량은 9.6 kg/10a였다. 2. 질소시비량이 0 kg/10a에서 8 kg/10a까지 증가하면 안토시아닌의 함량은 높아졌으나 12 kg/10a까지 처리하였을 때는 오히려 감소하였다. 회귀분석을 통해 얻어진 눈큰흑찰의 최대 안토시아닌 수량을 위한 적정 질소시비량은 10.6 kg/10a였다. 3. 재식밀도가 증가함에 따라 수수는 증가하고 수당립수는 감소하였는데 밀도 증가에 따른 수수의 증가치가 수당립수의 감소치보다 높아 $30{\times}12cm$의 높은 재식밀도에서 가장 높은 수량을 보였다. 4. 질소시비량 7 kg/10a 수준에서는 재식밀도 차이에 따른 안토시아닌 함량의 차이가 없었고 9, 12 kg/10a 수준에서는 밀도가 높아질수록 안토시아닌 함량이 높아져 $30{\times}12cm$ 수준에서 가장 안토시아닌 함량이 높았다. 현미수량과 안토시아닌 함량을 함께 고려한 안토시아닌 생산량은 질소시비량 9 kg/10a, 재식밀도 $30{\times}12cm$에서 69.1 g/10a로 가장 높았다.

ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래 (Current status and future of insect smart factory farm using ICT technology)

  • 석영식
    • 식품과학과 산업
    • /
    • 제55권2호
    • /
    • pp.188-202
    • /
    • 2022
  • 최근 곤충산업은 애완곤충, 천적 등 산업에서 사료, 식용, 약용곤충으로 그 활용범위가 확대되면서 곤충 원료의 품질관리에 대한 요구가 커지고 곤충 제품의 안전성 확보에 관심이 높아지고 있다. 전세계 곤충산업 시장은 많은 소규모 농가형 기업과 소수의 대기업으로 구성되어 있으며 전통적인 수작업 사육에서 고도로 자동화되고 기술적으로 진보된 플랜트형 사육 등 다양한 기술 수준의 사육형태가 존재한다. 산업규모가 확대되는 과정에서 사육환경의 설계는 온습도, 공기질 조절과 병원체 및 기타 오염 물질의 전파를 방지하는 것은 중요한 성공 요인이 되며 사육에서 부화, 사육, 가공에 이르기까지 생산의 안전성을 유지하기 위해서 통일된 운영시스템 아래 통제된 환경이 필요하다. 따라서 곤충의 생육과 사육환경의 빅데이터화 된 데이터베이스를 기반으로 외부 환경 변화에도 안정적인 사육환경 유지가 가능하고 곤충성장에 맞추어 사육환경을 제어하며 노동력 감소와 생산성 향상을 이루기 위한 ICT 기반 곤충 스마트팩토리팜의 설계 및 운용알고리즘을 개발하는 것은 곤충산업 발전의 필수 선결조건이 되고 있다. 특히 유럽 상업용 곤충사육시설은 상당한 투자자의 관심을 받아 곤충 회사가 대규모 생산시설로 건설하고 있는데 이는 EU가 2017년 7월 물고기양식 사료원료로 곤충 단백질의 사용을 승인한 후 가능해졌으며 이를 기반으로 곤충산업의 식용, 의료 등 다른 분야도 첨단기술을 접목하는 현상이 가속화되었다. 외국 곤충산업은 주로 전세계 식품 생산량의 30%에 이르는 소비 전 폐기물이라고 불리는 식품회사의 생산과잉 원료 등을 업사이클링을 통해 재활용생태계를 형성하는데 반해 우리나라는 가정 및 가게에서 발생하는 음식물폐기물 또는 농산물 가공부산물을 주로 이용한다는 점에서 사료 수집과 영양성분 유지, 위생 등 지속가능한 산업생태계를 이루는 데 어려움을 겪고 있다. 또한, 각 곤충 종은 고유하고 특정 사육기술을 요구하고 있다는 점을 감안할 때 곤충사육자는 각기 다른 종별 접근 방식을 채택해야 하는데 대부분의 곤충기업은 여전히 소규모로 운영되며 특히 농가형 기업의 경우 지식과 경험이 도제식으로 전승되는 경우가 많아 표준화되고 규격화된 사육기술이 유지되기 어려운 반면, 일부 곤충 기업은 대규모 사육시설에 스마트 통합 제어시스템을 도입하여 먹이주기, 물주기, 취급, 수확, 청소 시스템, 가공, 품질관리, 포장 및 보관과 같은 곤충 생산과 관련된 요소가 최적화된 사육 환경과 사육프로세스로 표준화되어가는 모습을 보이고 있으며 심지어 일부 유럽기업은 AI기술로 구동되는 완전 자율 모듈식 곤충시스템으로 사육 유지관리를 하고 있는 사례도 등장하기 시작하였다. 향후 전세계 곤충산업은 공급업체로부터 알이나 작은 유충을 구입하고 곤충을 성숙시키기까지 애벌레의 비육 즉 생산원료에 중점을 두는 시스템과 알을 낳고 수확하고 유충의 초기 전처리에 이르기까지 전체 생산 과정을 다루는 시스템, 곤충 유충 생산의 모든 단계와 제분, 지방 제거 및 단백질 또는 지방 분획 등 추가 가공 단계를 다루는 대규모 생산시스템 등으로 점점 세분화할 것으로 본다. 우리나라에서도 인공지능 및 ICT 첨단기술을 활용한 곤충스마트팩토리팜 연구 및 개발 등이 가속화되고 있어 곤충이 기존 사료, 식품 뿐만 아니라 천연 플라스틱 또는 천연성형소재 등 2차산업의 탄소제로 소재로 활용할 수 있도록 특정 종 육종과정 단축이나 기능성 강화를 위한 사육제어가 가능하도록 곧 곤충 스마트팩토리팜 한국형 맞춤사육시스템이 등장할 수 있을 것으로 보이며, 특히 곤충 제품의 지속 가능성을 높이기 위해 사료 및 자원 사용에 대한 통합 소프트웨어 접근 방식을 개발하는 것에 중점을 두고 진행되고 있다.

사료작물 후작 벼 직파 방법별 생육 및 수량 비교 (Comparison of Rice Growth and Yield in Different Direct Seeding Methods Following by Italian Ryegrass Harvest)

  • 박광호;박성태
    • 현장농수산연구지
    • /
    • 제21권1호
    • /
    • pp.49-59
    • /
    • 2019
  • 철분코팅볍씨 사용 담수산파와 무논점파, 싹튼 볍씨 사용 복토 무논점파의 생육 및 수량 비교(기계이앙-대조구)를 위한 포장시험 결과는 다음과 같았다. 벼 직파재배 방법별 출아일수는 7 ~ 8일 소요되었으며, m2당 입모수는 109 ~ 167개로 무논점파(철분) > 담수산파(철분) > 무논점파(복토) 순으로 많았다. 무논점파 결주율은 1.2 ~ 2.3%로 기계이앙 1.7%와 거의 비슷하였다. 벼 초장은 기계이앙에 비하여 담수산파(철분)와 무논점파(복토)는 파종 후 30일, 무논 점파(철분)는 파종 후 45일까지 유의하게 짧았으나, 이후 점차 차이가 적어져 파종 후 63일에는 거의 비슷하였다. 벼 직파방법 간에는 싹튼볍씨를 사용한 무논점파(복토)에서 초장이 약간 길었으나 통계적으로 유의차는 없었다. 벼 경수는 기계이앙에 비하여 담수산파(철분)와 무논점파(복토)는 많았고, 철분코팅볍씨 사용 무논점파는 적었다. 벼 직파방법별로는 담수산파(철분) > 무논점파(복토) > 무논점파(철분) 순으로 많았다. 출수기는 8월 22일 ~ 24일로 기계이앙 8월 19일 보다 3 ~ 5일이 늦었고, 직파재배 방법 중에는 싹튼볍씨 이용 무논점파(복토)에서 1 ~ 2일이 빨랐다. 간장은 기계이앙에 비하여 0.1 ~ 11.6 cm가 짧았고, 철분코팅볍씨를 사용한 담수산파와 무논점파는 통계적 유의차도 있었다. 벼 직파방법별로는 무논점파(복토) > 무논점파(철분) > 담수산파(철분) 순으로 길었고, 직파재배방법 간에 통계적 유의차도 있었다. 수장은 20.0 ~ 20.7 cm로 기계이앙 18.4 cm에 비하여 1.6 ~ 2.3 cm가 길었으나, 통계적 유의차는 없었다. 수량구성요소는 다 같이 벼 재배방법 간에 통계적으로 유의차는 없었으나, m2당 수수는 413 ~ 441개로 기계이앙과 3 ~ 22개 차이가 있었고, 벼 직파방법 간에는 담수산파(철분) > 무논점파(복토) > 무논점파(철분) 순으로 많았다. 수당입수는 76 ~ 84개로 기계이앙에 비하여 4 ~ 12개가 많았고, 벼 직파방법 간에는 무논점파(복토) > 담수산파(철분) > 무논점파(철분) 순으로 많았다. m2당 입수는 담수산파(철분) > 무논점파(복토) > 무논점파(철분) > 기계이앙 순으로 많았고, 등숙비율은 81.3 ~ 88.6%, 현미천립중은 24.1 ~ 25.8g이었다. 쌀수량은 10a당 494 ~ 524 kg으로 기계이앙 보다 2 ~ 8% 높았고, 벼 재배방법 간에는, 담수산파(철분) > 무논점파(복토) ≥ 무논점파(철분) > 기계이앙 순으로 높았으나, 통계적으로 유의차는 없었다. 현미품위는 완전미 비율이 무논점파(철분) 52.9% > 무논점파(복토) 43.6% > 담수산파(철분) 40.% 순으로 높았으나, 벼 직파재배의 현미품위는 기계이앙(64.3%) 보다는 통계적으로 유의하게 낮았다. 잎도열병은 이앙 후 45일(8월 2일) 전·후에 기계이앙 보다 좀 더 심하게 발생하였으나 벼 재배방법 다 같이 목도열병은 발생하지 않았다. 잎집무늬마름병은 기계이앙 10%, 직파재배 2 ~ 5% 정도 내외 이삭누룩병은 벼 재배방법 다같이 0.1% 정도 발생하였다. 잡초는 8월에 들어서 부터 기계이앙 0.5 ~ 1%, 담수산파(철분) 3 ~ 8%, 무논점파는 1 ~ 5% 발생하였다. 특히 담수산파는 9월 상순이후 후발 피 발생이 증가하였다. 잡초성벼는 벼 재배방법 다 같이 발생하지 않았다.