• Title/Summary/Keyword: Seed Oil

Search Result 714, Processing Time 0.029 seconds

Interpretation of Agronomic Traits Variation of Sesame Cultivar Using Principal Component Analysis

  • Shim, Kang-Bo;Hwang, Chung-Dong;Pae, Suk-Bok;Park, Jang-Whan;Byun, Jae-Cheon;Park, Keum-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • This study was conducted to evaluate the growth characters and yield components of 18 collected sesame cultivars to get basic information on the variation for the sesame breeding using principal component analysis. All characters except days to flowering, days to maturity and 1,000 seed weight showed significantly different. Seed weight per 10 are showed higher coefficient of variance. Capsule bearing stem length and liter weight showed positive correlation with seed yield per 10 are. The principal components analysis grouped the estimated sesame cultivars into four main components which accounted for 83.7% of the total variation at the eigenvalue and its contribution to total variation obtained from principal component analysis. The first principal component ($Z_1$) was applicable to increase plant height, capsule bearing stem length and 1,000-seed weight. The second principal component ($Z_2$) negatively correlated with days to flowering and maturity by which it was applicable to shorten flowering and maturity date of sesame. At the scatter diagram, Yangbaek, Ansan, M1, M2, M4, M7 and M9 were classified as same group, but M10, Yanghuk, Kanghuk, M5, M6, M12 and M13 were classified as different group. This results would be helpful for sesame breeder to understand genetic relationship of some agronomic characters and select promising cross lines for the development of new sesame variety.

Inhibitory Effect of Ginkgo biloba Extracts on Melanin Biosynthesis (은행 열매 추출물의 멜라닌 생성 저해효과)

  • Kim, Yoon Suk;Lee, Young Hwa;Lee, Jin Young;Yi, Yong sub
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.383-389
    • /
    • 2015
  • In this study, we investigated the inhibitory effect on melanin synthesis of Ginkgo biloba seed oil. The results showed 9.96% inhibitory effect scavenging activity on DPPH and showed a value of 1.33 mM of $FeSO_4$ at a concentration of 0.06% in DMSO by using FRAP assay. G. biloba seed oil inhibited tyrosinase activity up tp 37.72% and suppressed the biosynthesis melanin up to 48.02% at 0.06% in B16/F10 mouse melanoma cell. In G. biloba seed oil treated group tyrosinase, TRP-1, TRP-2 and MITF gen expression levels significantly decreased compared to the contral group at a concentration of 0.04% and 0.06%. In conclusion, these results indicated that G. biloba seed oil extract have a good antimelanogenetic effects.

Determination of Protein and Oil Contents in Soybean Seed by Near Infrared Reflectance Spectroscopy

  • Choung, Myoung-Gun;Baek, In-Youl;Kang, Sung-Taeg;Han, Won-Young;Shin, Doo-Chull;Moon, Huhn-Pal;Kang, Kwang-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.106-111
    • /
    • 2001
  • The applicability of near infrared reflectance spectroscopy(NIRS) was tested to determine the protein and oil contents in ground soybean [Glycine max (L.) Merr.] seeds. A total of 189 soybean calibration samples and 103 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of protein, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing and 1 point second smoothing) math treatment condition with SNV-D (Standard Normal Variate and Detrend) scatter correction method and entire spectrum by using MPLS (Modified Partial Least Squares) regression. In the case of oil, the best equation was obtained at 1, 4, 4, 1 condition with SNV-D scatter correction method and near infrared (1100-2500nm) region by using MPLS regression. Validation of these NIRS equations showed very low bias (protein:-0.016%, oil : -0.011 %) and standard error of prediction (SEP, protein: 0.437%, oil: 0.377%) and very high coefficient of determination ($R^2$, protein: 0.985, oil : 0.965). Therefore, these NIRS equation seems reliable for determining the protein and oil content, and NIRS method could be used as a mass screening method of soybean seed.

  • PDF

Effect of Temperature and Pressure on the Oil Expression of Perilla Seed (온도와 압력이 들깨종자의 압착착유에 미치는 영향)

  • Min, Young-Kyoo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.28-32
    • /
    • 1993
  • In order to elucidate the temperature and pressure effect on the oil expression of perilla seed, recovery of expressed oil (REO) and volumetric strain of both roasted and unroasted perilla seeds were observed at different temperature, pressure and for different periods of press. In this experiment, moisture content of perilla seed was adjusted to 2.5% and temperature used were 30, 40, 50 and $60^{\circ}C$. Pressure applied were 10, 30, 50 and 70 MPa, and periods of press were 5, 7, 9 and 11 min. As temperature and pressure were increased or periods of press was lengthened, REO and volumetric strain of pressed cake were increased. Maximum REO of unroasted perilla seeds were found to be 85.59% and those of roasted perilla seeds be 85.30%, at 70 MPa, $60^{\circ}C$, and for 11 min. Viscosity of expressed oil were exponentially dependent on temperature and REO were increased as viscosity was decreased. From statistical analysis between effects of expression factors and REO and volumetric strain of pressed cake, importance of their effects was decreased in the order of pressure, temperature, $temperature{\times}pressure$ and periods of press. The multiple regression equation between REO(Y) and temperature (T), pressure (P), and periods of press (D) were as follows; $Y=7.95+36.85P+1.12T^2-0.55TP-5.08P^2\;r^2=0.97$ for unroasted perilla seed (p<0.01), $Y=4.50T+39.23P+0.83T^2-1.71P-5.07P^2\;r^2=0.99$ for roasted perilla seed (p<0.01).

  • PDF

Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines

  • Al-Sheddi, Ebtesam Saad;Farshori, Nida Nayyar;Al-Oqail, Mai Mohammad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3383-3387
    • /
    • 2015
  • Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti-bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and $1000{\mu}g/ml$, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and $1000{\mu}g/ml$, respectively in A-549 cells. The 100 $100{\mu}g/ml$ and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and $1000{\mu}g/ml$ of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines.

Varietal Difference of Dry Matter Weight of Stem and Leaf in Rape

  • Kwon, Byung-Sun;Shin, Jeong-Sik;Ahn, Gae-Soo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.40-42
    • /
    • 2003
  • In order to examine the possibility that oil seed rape could be used as a forage fodder crop and to select the most suitable variety of forage rape at the southern area of Korea, two varieties of oil seed rape currently grown for oil production and six introduced varieties of forage rape with relatively high yield and high nutritional value were grown at the same condition and yield components were observed. Forage rape was superior to oil seed rape in terms of yield components, plant fresh weight and plant dry mater weight. Velox was superior to any other variety of forage rape in these characters. When plant dry matter weight of the rape was subdivided into four components such as a main stem, branch stems, main stem leaves and branch leaves, contribution of these components to plant dry matter weight was in the order of branch stems, branch leaves, the main stem and main stem leaves. Dry matter percentage of the rape ranged from 9.32 to 11.08 percent, which was somewhat low value. There was no significant difference between two groups of the rape in terms of dry matter percentage. Velox showed somewhat higher value in dry matter percentage.

  • PDF

Antimite Activity of Cumin Volatiles Against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae)

  • Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.805-809
    • /
    • 2004
  • The antimite activities of cumin seed oil-derived cuminaldehyde and eleven commercial components of Cuminum cyminum oil were examined against Dermatophagoides farinae and Dermatophagoides pteronyssinus adults and compared with those of benzyl benzoate and N,N-diethyl-m-toluamide. Responses varied according to dose and mite species. On the basis of $LD_{50}$ values, the compound most toxic to D. farinae adults was cuminaldehyde ($2.40\mug/cm^2$) followed by benzyl benzoate ($9.32\mug/cm^2$), thymol ($9.43\mug/cm^2$), DEET ($36.84\mug/cm^2$), and 3-carene ($42.11\mug/cm^2$). Against D. pteronyssinus adults, cuminaldehyde ($1.94\mug/cm^2$) was much more effective than benzyl benzoate ($6.50\mug/cm^2$) thymol ($6.92\mug/cm^2$), DEET ($17.79\mug/cm^2$), and 3-carene ($39.85\mug/cm^2$). These results indicate that the antimite activity of cumin seed oil could be caused by cuminaldehyde. Cuminaldehyde was about 3.9 and 3.4 times more toxic than benzyl benzoate against D. farinae and D. pteronyssinus adults, respectively. Therefore, further study is needed to confirm the findings of this study and the possibility of cuminaldehyde as a house dust mite control agent or a lead compound.

Analyses of Lipid and Volatile Components in Juniper Seed(Juniperus rigida Sieb. et Zucc.) (노간주나무(Juniperus rigida Sieb. et Zucc.) 열매의 지질 및 향기성분 분석)

  • 신원선;하재호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.795-800
    • /
    • 2003
  • Juniper seed oil extracted by steam distillation has been a useful material as a medicine, insect repellant, and flavorant for alcoholic beverages. As the result of juniper seed oil analysis, the acid value, saponification value, unsaponification value phosphorus contents, and refractive index were 91.04, 85.15, 15.52, 11.04 ppm, 1.47, respectively The content of neutral lipids, glycolipids and phospholipids were 85.4%, 12.2% and 2.4%, respectively. From the fatty acids analysis, the major fatty acids from the juniperseed harvested in August were lauric acid (31.9% ), palmitic acid (28.0% ), stearic acid (9.9%), and oleic acid (8.5%) . However, maturated seed oil harvested in October mainly consists of linoleic acid (47.6%), linolenic acid (17.6%), oleic acid (16.1%), and palmitic acid (11.9%). Upon these analyses, fatty acids composition of juniper seed oil depends on the seed maturation. According to volatile compounds analyses of essential oil extracted using steam distillation method and SPME, the major compounds were $\beta$-myrcene, $\alpha$-pinene, $\beta$-farnescene, $\beta$-cubebene, limonene, trans-caryo-phyllene, $\alpha$-terpinolene, camphene, sabinene, and $\beta$-pinene.

Functional Ingredient and Their Some Variance in Amaranth and Quinoa (비름(Amaranth)과 명아주(Quinoa) 재배종의 기능성 물질과 변이)

  • Lee, Jae-Hak;Kim, Ki-Jun;Lee, Jung-Il;Lee, Seung-Tack;Ryu, Su-Noh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.spc1
    • /
    • pp.145-165
    • /
    • 1996
  • Amaranth(Amaranthus spp. L.) and quinoa (Chenpodium quinoa Willd.) are old crops from South, Central America and Central Asia and their grains have been identified as very promising food crops because of their exceptional nutritive value. Squalene is an important ingredient in skin cosmetics and computer disc lubricants as well as bioactive materials such as inhibition of fungal and mammalian sterol biosynthesis, antitumor, anticancer, and immunomodulation. Amaranth has a component called squalene (2,6,10,15,19,23-hexamethyl-2,6,10,14,22-tetraco-sahexaene) about 1/300 of the seed and $5\~8\%$ of its seed oil. Oil and squalene content in amaranth seed were different for the species investigated. Squalene content in seed oil also increased by $15.5\%$ due to puffing and from 6.96 to $8.01\%$ by refining and bleaching. Saponin concentrations in quinoa seed ranged 0.01 to $5.6\%$. Saponins are located in the outer layers of quinoa grain. These layers include the perianth, pericarp, a seed coat layer, and a cuticle like structure. Oleanane-type triterpenes saponins are of great interest because of their diverse pharmacological properties, for instance, anti-inflammatory, antibiotic, contraceptive, and cholesterol-lowering effects. It is known that quinoa contains a number of structurally diverse saponins including the aglycones, oleanolic acid, hederagenin, and phytolaccagenic acid, which are new potential in gredient for pharmacological properties. It is likely that these saponin levels will be considerably affected by genetic, agronomic and environmental factors as well as by processing. With the current enhanced public interest in health and nutrition amaranth and quinoa will most likely remain in the immediate future within the realm of exotic health foods until such time as agricultural production meets the quantities and qualify required by industrial food manufacturers.

  • PDF

Cytotoxicity of Nigella Sativa Seed Oil and Extract Against Human Lung Cancer Cell Line

  • Al-Sheddi, Ebtesam Saad;Farshori, Nida Nayyar;Al-Oqail, Mai Mohammad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.983-987
    • /
    • 2014
  • Nigella sativa (N sativa), commonly known as black seed, has been used in traditional medicine to treat many diseases. The antioxidant, anti-inflammatory, and antibacterial activities of N sativa extracts are well known. Therefore, the present study was designed to investigate the anticancer activity of seed extract (NSE) and seed oil (NSO) of N sativa against a human lung cancer cell line. Cells were exposed to 0.01 to 1 mg/ml of NSE and NSO for 24 h, then percent cell viability was assessed by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed NSE and NSO significantly reduce the cell viability and alter the cellular morphology of A-549 cells in a concentration dependent manner. The percent cell viability was recorded as 75%, 50%, and 26% at 0.25, 0.5, and 1 mg/ml of NSE by MTT assay and 73%, 48%, and 23% at 0.25, 0.5, and 1 mg/ml of NSE by NRU assay. Exposure to NSO concentrations of 0.1 mg/ml and above for 24 h was also found to be cytotoxic. The decrease in cell viability at 0.1, 0.25, 0.5, and 1 mg/ml of NSO was recorded to be 89%, 52%, 41%, and 13% by MTT assay and 85%, 52%, 38%, and 11% by NRU assay, respectively. A-549 cells exposed to 0.25, 0.5 and 1 mg/ml of NSE and NSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment of seed extract (NSE) and seed oil (NSO) of Nigella sativa significantly reduce viability of human lung cancer cells.