• Title/Summary/Keyword: Seed Layer

Search Result 468, Processing Time 0.029 seconds

Investigation of aluminum-induced crystallization of amorphous silicon and crystal properties of the silicon film for polycrystalline silicon solar cell fabrication (다결정 실리콘 태양전지 제조를 위한 비정절 실리콘의 알루미늄 유도 결정화 공정 및 결정특성 연구)

  • Jeong, Hye-Jeong;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.254-261
    • /
    • 2010
  • Polycrystalline silicon (pc-Si) films are fabricated and characterized for application to pc-Si thin film solar cells as a seed layer. The amorphous silicon films are crystallized by the aluminum-induced layer exchange (ALILE) process with a structure of glass/Al/$Al_2O_3$/a-Si using various thicknesses of $Al_2O_3$ layers. In order to investigate the effects of the oxide layer on the crystallization of the amorphous silicon films, such as the crystalline film detects and the crystal grain size, the $Al_2O_3$ layer thickness arc varied from native oxide to 50 nm. As the results, the defects of the poly crystalline films are increased with the increase of $Al_2O_3$ layer thickness, whereas the grain size and crystallinity are decreased. In this experiments, obtained the average pc-Si sub-grain size was about $10\;{\mu}m$ at relatively thin $Al_2O_3$ layer thickness (${\leq}$ 16 nm). The preferential orientation of pc-Si sub-grain was <111>.

Fabrication of Hierarchical Nanostructures Using Vacuum Cluster System

  • Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.389-390
    • /
    • 2012
  • In this study, we fabricate a superhydrophobic surface made of hierarchical nanostructures that combine wax crystalline structure with moth-eye structure using vacuum cluster system and measure their hydrophobicity and durability. Since the lotus effect was found, much work has been done on studying self-cleaning surface for decades. The surface of lotus leaf consists of multi-level layers of micro scale papillose epidermal cells and epicuticular wax crystalloids [1]. This hierarchical structure has superhydrophobic property because the sufficiently rough surface allows air pockets to form easily below the liquid, the so-called Cassie state, so that the relatively small area of water/solid interface makes the energetic cost associated with corresponding water/air interfaces smaller than the energy gained [2]. Various nanostructures have been reported for fabricating the self-cleaning surface but in general, they have the problem of low durability. More than two nanostructures on a surface can be integrated together to increase hydrophobicity and durability of the surface as in the lotus leaf [3,5]. As one of the bio-inspired nanostructures, we introduce a hierarchical nanostructure fabricated with a high vacuum cluster system. A hierarchical nanostructure is a combination of moth-eye structure with an average pitch of 300 nm and height of 700 nm, and the wax crystalline structure with an average width and height of 200 nm. The moth-eye structure is fabricated with deep reactive ion etching (DRIE) process. $SiO_2$ layer is initially deposited on a glass substrate using PECVD in the cluster system. Then, Au seed layer is deposited for a few second using DC sputtering process to provide stochastic mask for etching the underlying $SiO_2$ layer with ICP-RIE so that moth-eye structure can be fabricated. Additionally, n-hexatriacontane paraffin wax ($C_{36}H_{74}$) is deposited on the moth-eye structure in a thermal evaporator and self-recrystallized at $40^{\circ}C$ for 4h [4]. All of steps are conducted utilizing vacuum cluster system to minimize the contamination. The water contact angles are measured by tensiometer. The morphology of the surface is characterized using SEM and AFM and the reflectance is measured by spectrophotometer.

  • PDF

Fabrication and Electrical Properties of PZT/BFO Multilayer Thin Films

  • Jo, Seo-Hyeon;Nam, Sung-Pil;Lee, Sung-Gap;Lee, Seung-Hwan;Lee, Young-Hie;Kim, Young-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.193-196
    • /
    • 2011
  • Lead zirconate titanate (PZT)/ bismuth ferrite (BFO) multilayer thin films have been fabricated by the spin-coating method on Pt(200 nm)/Ti(10 nm)/$SiO_2$(100 nm)/p-Si(100) substrates using $BiFeO_3$ and $Pb(Zr_{0.52}Ti_{0.48})O_3$ metal alkoxide solutions. The PZT/BFO multilayer thin films show a uniform and void-free grain structure, and the grain size is smaller than that of PZT single films. The reason for this is assumed to be that the lower BFO layers play an important role as a nucleation site or seed layer for the formation of homogeneous and uniform upper PZT layers. The dielectric constant and dielectric losses decreased with increasing number of coatings, and the six-layer PZT/BFO thin film has good properties of 162 (dielectric constant) and 0.017 (dielectric losses) at 1 kHz. The remnant polarization and coercive field of three-layer PZT/BFO thin films were 13.86 ${\mu}C/cm^2$ and 37 kV/cm respectively.

Surface Imaging of Barley Aleurone Cell by Atomic Force Microscopy

  • Kim, Tae-Wan;Huh, Kwang-Woon;Kim, Seung-Hwan;Ku, Hyun-Hwoi;Lee, Byung-Moo;Kim, Jae-Yoon;Seo, Yong-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • To observe and analysis ultra-microscopically barley aleurone cell surface, atomic force microscope (AFM) was used. Seed coat of early maturing germplasm, eam9, was dehulled and scanned by non-contact mode. We have obtained the high resolution topographic 3-dimensional image of barley aleurone layer with high resolution. These images showed the membrane proteins in barley aleurone cell. One channel protein and numerous peripheral or integral proteins were detected in a area of 100 $\mu\textrm{m}^2$. Furthermore, we found that their widths were ranged from 50 to 750nm and lengths from 0 to 66 $\mu\textrm{m}$. The thickness of aleurone layer was measured by scanning electron microscope. The thickness at early developmental stage was about 16 and then the aleurone cell enlarged upto 57 $\mu\textrm{m}$${\mu}{\textrm}{m}$ at least until 42 days after anthesis. In this study, we firstly reported on the ultrastructural AFM analysis of living aleurone cell as a biological specimen. It was clearly suggested that AFM will become an powerful tool for probing both the structural properties of biological samples.

Electrochemical Deposition of Copper on Polymer Fibers

  • Lim, Seung-Lin;Kim, Jaecheon;Park, Jongdeok;Kim, Sohee;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.132-138
    • /
    • 2016
  • In this study, we report the fabrication of functional complex fibers, which have been studied widely globally for numerous applications. Here, we fabricated conductive complex fibers with antibacterial properties by coating metal ions on the surface of plastic (polypropylene) fibers using the electroless and electrochemical deposition. First, we polished the polypropylene melt-blown fiber surface and obtained an absorbing Pd seed layer on its surface. Subsequently, we substituted the Pd with Cu. Bis-3-sulfopropyl-disulfide disodium salt (SPS), polyethylene glycol (PEG), and ethylene thiourea (ETU) were used as the brightener, carrier, and leveler, respectively for the electroplating. We focused on most achieving the stable plating condition to remove dendrites, which are normally during electroplating metals so that smooth layer is formed on the fiber surface. The higher the amount of SPS, the higher was the extent of irregular plate-like growth. Many irregularities in the form of round spheres were observed with increase in the amount of PEG and ETU. Hence, when the additives were used separately, a uniform coating could not be obtained. A stable coating was obtained when the three additives were combined and a uniform 5-9 μm thick copper layer with a stable morphology could be obtained around the fiber. We believe that our results can be applied widely to obtain conductive fibers with antibacterial properties and are useful in aiding research on conductive lightweight composite fibers for application in information technology and robotics.

Low Cost Via-Hole Filling Process Using Powder and Solder (파우더와 솔더를 이용한 저비용 비아홀 채움 공정)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Nam, Jae-Woo;Lee, Jong-Hyun;Cho, Chan-Seob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • This study proposed a noble process to fabricate TSV (Through Silicon Via) structure which has lower cost, shorter production time, and more simple fabrication process than plating method. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process. The via hole was $100{\mu}m$ in diameter and $400{\mu}m$ in depth. A dielectric layer of $SiO_2$ was formed by thermal oxidation on the front side wafer and via hole side wall. An adhesion layer of Ti and a seed layer of Au were deposited. Soldering process was applied to fill the via holes with solder paste and metal powder. When the solder paste was used as via hole metal line, sintering state and electrical properties were excellent. However, electrical connection was poor due to occurrence of many voids. In the case of metal powder, voids were reduced but sintering state and electrical properties were bad. We tried the via hole filling process by using mixing solder paste and metal powder. As a consequence, it was confirmed that mixing rate of solder paste (4) : metal powder (3) was excellent electrical characteristics.

Synthesis of Magneli Phases and Application to the Photoelectrochemical Electrode (마그넬리상 합성과 광전기화학셀 전극 응용)

  • Park, Jihwan;Nguyen, Duc Quang;Yang, Haneul;Hong, Soonhyun;Truong, Thi Hien;Kim, Chunjoong;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.261-267
    • /
    • 2018
  • Hydrothermal synthesis of highly crystalline $TiO_2$ nanorods is a well-developed technique and the nanorods have been widely used as the template for growth of various core-shell nanorod structures. Magneli/CdS core-shell nanorod structures are fabricated for the photoelectrochemical cell (PEC) electrode to achieve enhanced carrier transport along the metallic magneli phase nanorod template. However, the long and thin $TiO_2$ nanorods may form a high resistance path to the electrons transferred from the CdS layer. $TiO_2$ nanorods synthesized are reduced to magneli phases, $TixO_{2x-1}$, by heat treatment in a hydrogen environment. Two types of magneli phase nanorods of $Ti_4O_7$ and $Ti_3O_5$ are synthesized. Structural morphology and X-ray diffraction analyses are carried out. CdS nano-films are deposited on the magneli nanorods for the main light absorption layer to form a photoanode, and the PEC performance is measured under simulated sunlight irradiation and compared with the conventional $TiO_2/CdS$ core-shell nanorod electrode. A higher photocurrent is observed from the stand-alone $Ti_3O_5/CdS$ core-shell nanorod structure in which the nanorods are grown on both sides of the seed layer.

Derivation of endothelial cells from porcine induced pluripotent stem cells by optimized single layer culture system

  • Wei, Renyue;Lv, Jiawei;Li, Xuechun;Li, Yan;Xu, Qianqian;Jin, Junxue;Zhang, Yu;Liu, Zhonghua
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.9.1-9.15
    • /
    • 2020
  • Regenerative therapy holds great promise in the development of cures of some untreatable diseases such as cardiovascular diseases, and pluripotent stem cells (PSCs) including induced PSCs (iPSCs) are the most important regenerative seed cells. Recently, differentiation of human PSCs into functional tissues and cells in vitro has been widely reported. However, although porcine reports are rare they are quite essential, as the pig is an important animal model for the in vitro generation of human organs. In this study, we reprogramed porcine embryonic fibroblasts into porcine iPSCs (piPSCs), and differentiated them into cluster of differentiation 31 (CD31)-positive endothelial cells (ECs) (piPSC-derived ECs, piPS-ECs) using an optimized single-layer culture method. During differentiation, we observed that a combination of GSK3β inhibitor (CHIR99021) and bone morphogenetic protein 4 (BMP4) promoted mesodermal differentiation, resulting in higher proportions of CD31-positive cells than those from separate CHIR99021 or BMP4 treatment. Importantly, the piPS-ECs showed comparable morphological and functional properties to immortalized porcine aortic ECs, which are capable of taking up low-density lipoprotein and forming network structures on Matrigel. Our study, which is the first trial on a species other than human and mouse, has provided an optimized single-layer culture method for obtaining ECs from porcine PSCs. Our approach can be beneficial when evaluating autologous EC transplantation in pig models.

Studies on the Development of Food Resources from Waste Seeds -II. Chemical Composition of Apple Seed- (폐기종실(廢棄種實)의 식량자원화(食糧資源化)에 관(關)하여 -제(第) 2 보(報) : 사과씨의 화학적(化學的) 조성(組成)-)

  • Yoon, Hyung-Sik;Choi, Cheong;Oh, Man-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.128-132
    • /
    • 1983
  • The apple seed contained 25.96% of crude fat and 37.62% of crude protein. The lipid fractions obtained by cilicic column chromatography were mainly composed of about 93.52% neutral lipid, whereas compound lipid was only 6.48% level. Among the neutral lipid separated by thin layer chromatography, triglyceride was 92.17%, sterol ester, sterol, diglyceride and free fatty acid were 3.53, 2.25, 1.44 and 0.56, respectively. The predominent fatty acids of total and neutral lipids were linoleic acid (59.79-69.37%) and oleic acid (20.04-29.82%), but those of glycolipid and phojspholipid were linoleic acid (29.20-36.04%). The major fatty acids of triglyceride separated from neutral lipid were oleic acid (44.31%), linoleic acid (36.66%) and palmitic acid (12.48%). The salt soluble protein of apple seed was highly dispersible in 0.02M sodium phosphate buffer containing about 1.0M $MgSO_4$, and the extractability of seed protein was 37%, Glutamic acid was the major amino acid in salt soluble protein, followed by arginine and aspartic acid. The eletrophoretic analysis showed three bands in apple seed protein, and the collection rate of the main protein fraction purified by Sephadex G-100 and G-200 was 76.6%. Glutamic acid, aspartic acid and arginine were the major amino acids of the main apple seed protein. The molecular weight for the main protein of the apple seed was estimated to be 45,000.

  • PDF

Quantitative Assessments and Spatial Pattern Analyses of Weed Seed Banks of Arable Peat in Selangor, Malaysia (말레이지아 세랑고지역 부식질토양경지 매립잡초종자에 대한 정량생태분석)

  • Bakar, Baki Bin;Kwon, Yong-Woong;Yin, Fenny Wong Nyuk
    • Korean Journal of Weed Science
    • /
    • v.17 no.3
    • /
    • pp.269-280
    • /
    • 1997
  • Collated data from the 1995-1996 field surveys of weed seeds buried in the plough layer of peat soil in Selangor district were analysed to assess species-dominance and spatial pattern of distribution of weed seeds based on selected quantitative indices and index of dispersion. Forty five species within 14 families were recorded of which 24 were broadleaves, 12 grasses and 9 sedges. They comprised ca. 53.2, 31.2 and 15.6%, respectively based on total population counts. Total seed population was ca. $8.14{\times}10^7$ seeds/ha within the fast 25cm soil depth. Wide variabilities in population counts were registered among species ranging from < $7.0{\times}10^4$ seeds/ha for Amaranthus gracilis to ca. $5.64{\times}10^6$ seeds/ha for Heteropogon contortus. Seeds of Cleome rutidesperma was the most abundant(ca. $2.347{\times}10^7$ seeds/ha). Difference in seed population counts may be attributed to inherent variation in fecundity, population fluxes, their spatial distribution patterns and the agronomic practices prevailing in the areas of survey. The profile distribution of soil seed banks was skewed within the first 0 - 10cm depth, comprising ca. 69% of the total seed counts. Seed counts in the 10 - 15, 15 - 20 and 20 - 25cm soil profiles were in the order of 17.9, 8.6 and 4.0% of the total populations, respectively. Weed seeds of all species displayed different degree of aggregated pattern of distribution with variance-to-mean ratios of > 1 and Lloyd's mean crowding($m^*$) values from 1.244 for Cyperus iria, Phyllanthus debilis, Phyllanthus urinaria, Scirpus grosses and urinaria lagopodiodes to 9607.7 for Cleome rutidosperma. Lloyd's patch indices(Ip) ranging from 5.1 for Aeschynomene indica to 188.5 for Bracharia reptans were registered. Differences in the VMR, $m^*$ and Ip values among species suggested inter-alia inherent variabilities in their disposal capacity from seed source and different agronomic practices prevailing in the areas surveyed.

  • PDF