• Title/Summary/Keyword: Seed Layer

Search Result 468, Processing Time 0.026 seconds

The Properties of Spin Valves with a Partially Oxidized Fe or CoFe Ultra-Thin Layer Inserted in the Magnetic Layers

  • In, Jang-sik;Han,Yoon-sung;Kim, Sung-hoon;Shim, Jae-chul;Hong, Jong-ill
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.115-118
    • /
    • 2006
  • Co-ferrite nanoparticles have been synthesized by the decomposition of iron(III) acetylacetonate, $Fe(acac)_3$ and Co acetylacetonate, $Co(acac)_2$ in benzyl/phenyl ether in the presence of oleic acid and oleyl amine at the refluxingtemperature of $295^{\circ}C$/$265^{\circ}C$ for 30 min. before cooling to room temperature. Particle diameter detected by PSA can be turned from 4 nm to 20 nm by seed-mediated growth and reaction conditions. Structural and magneticcharacterization of Co-ferrite were measured by use of HRTEM, SAED (selected area electron diffraction), XRD and SQUID. The as-synthesized Co-ferrite nanoparticles have a cubic spinel structure and coercivity of 20 nm $CoFe_{2}O_{4} nanoparticles reached 1 kOe at room temperature and 18 kOe at 10 K.

The Blanket Deposition and the Sputter Seeding Effects on Substrates of the Chemically Vapor Deposited Cu Films (Sputter Seeding을 이용한 CVD Cu 박막의 비선택적 증착 및 기판의 영향)

  • Park, Jong-Man;Kim, Seok;Choi, Doo-Jin;Ko, Dae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.827-835
    • /
    • 1998
  • Blanket Copper films were chemically vapor deposited on six kinds for substrates for scrutinizing the change of characteristics induced by the difference of substrates and seeding layers. Both TiN/Si and {{{{ { SiO}_{2 } }}/Si wafers were used as-recevied and with the Cu-seeding layers of 40${\AA}$ and 160${\AA}$ which were produced by sputtering The CVD processes were exectued at the deposition temperatures between 130$^{\circ}C$ and 260$^{\circ}C$ us-ing (hfc)Cu(VTMS) as a precursor. The deposition rate of 40$^{\circ}C$ Cu-seeded substrates was higher than that of other substrates and especially in seeded {{{{ { SiO}_{2 } }}/Si substrate because of the incubation period reducing in-duced by seeding layer at the same deposition time and temperature. The resistivity of 160${\AA}$ Cu seeded substrate was lower then that of 40 ${\AA}$ because the nucleation and growth behavior in Cu-island is different from the behavior in {{{{ { SiO}_{2 } }} substrate due to the dielectricity of {{{{ { SiO}_{2 } }}.

  • PDF

Study of Ni/Cu Front Metal Contact Applying Selective Emitter Silicon Solar Cells (선택도핑을 적용한 Ni/Cu 전면 전극 실리콘 태양전지에 관한 연구)

  • Lee, JaeDoo;Kwon, Hyukyong;Lee, SooHong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.905-909
    • /
    • 2011
  • The formation of front metal contact silicon solar cells is required for low cost, low contact resistance to silicon surfaces. One of the available front metal contacts is Ni/Cu plating, which can be mass produced via asimple and inexpensive process. A selective emitter, meanwhile, involves two different doping levels, with higher doping (${\leq}30{\Omega}/sq$) underneath the grid to achieve good ohmic contact and low doping between the grid in order to minimize the heavy doping effect in the emitter. This study describes the formation of a selective emitter and a nickel silicide seed layer for the front metallization of silicon cells. The contacts were thickened by a plated Ni/Cu two-step metallization process on front contacts. The experimental results showed that the Ni layer via SEM (Scanning Electron Microscopy) and EDX (Energy dispersive X-ray spectroscopy) analyses. Finally, a plated Ni/Cu contact solar cell displayed efficiency of 18.10% on a $2{\times}2cm^2$, Cz wafer.

Integration Technologies for 3D Systems

  • Ramm, P.;Klumpp, A.;Wieland, R.;Merkel, R.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.261-278
    • /
    • 2003
  • Concepts.Wafer-Level Chip-Scale Concept with Handling Substrate.Low Accuracy Placement Layout with Isolation Trench.Possible Pitch of Interconnections down to $10{\mu}{\textrm}{m}$ (Sn-Grains).Wafer-to-Wafer Equipment Adjustment Accuracy meets this Request of Alignment Accuracy (+/-1.5 ${\mu}{\textrm}{m}$).Adjustment Accuracy of High-Speed Chip-to-Wafer Placement Equipment starts to meet this request.Face-to-Face Modular / SLID with Flipped Device Orientation.interchip Via / SLID with Non-Flipped Orientation SLID Technology Features.Demonstration with Copper / Tin-Alloy (SLID) and W-InterChip Vias (ICV).Combination of reliable processes for advanced concept - Filling of vias with W as standard wafer process sequence.No plug filling on stack level necessary.Simultanious formation of electrical and mechanical connection.No need for underfiller: large area contacts replace underfiller.Cu / Sn SLID layers $\leq$ $10{\mu}{\textrm}{m}$ in total are possible Electrical Results.Measurements of Three Layer Stacks on Daisy Chains with 240 Elements.2.5 Ohms per Chain Element.Contribution of Soldering Metal only in the Range of Milliohms.Soldering Contact Resistance ($0.43\Omega$) dominated by Contact Resistance of Barrier and Seed Layer.Tungsten Pin Contribution in the Range of 1 Ohm

  • PDF

Studies on the Development of Food Resources from Waste Seeds IV. Chemical Composition of Red Pepper Seed (폐기종실(廢棄種實)의 식량자원화(食糧資源化)에 관(關)하여 제(第) 4 보(報) : 고추씨의 화학적(化學的) 조성(組成))

  • Yoon, Hyung Sik;Kwon, Joong Ho;Bae, Man Jong;Hwang, Joo Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.1
    • /
    • pp.46-50
    • /
    • 1983
  • In order to find out the possibility of utilizing red pepper seed as food resources of fats and proteins, a series of studies were conducted. The red pepper seed contained 27.6% of crude fat and 22.2% of crude protein. The lipid fractions obtained by silicic acid column chromatography were mainly composed of 95.4% neutral lipid, where as compound lipid were 4.6%. Among the neutral lipid separated by thin layer chromatography, triglyceride was 85.6%, sterol ester 4.9%, free fatty acids 3.4%, diglyceride 2.5%, sterol 2.2% and monoglyceride 1.1%, respectively. The predominant fatty acids of red pepper seed oil were linoleic acid (57.1-75.4%), palmitic acid (13.9-21.3%) and oleic acid (8.0-15.1%), especially glycolipid contained 1.7% of linolenic acid and small amount of myristic acid and arachidic acid. The salt soluble protein of red pepper seed was highly dispersible in 0.02M sodium phosphate buffer containing 1.0M $MgSO_4$, and the extractability of seed protein was about 25.0%. Glutamic acid and arginine were major amino acids of red pepper seed protein. The electrophoretic analysis showed 6 bands in seed protein, and the collection rate of the main protein fraction purified by sephadex G-100 and G-200 was about 62.2%. Glutamic acid (19.9%) was major amino acid of the main protein, followed by glycine and alanine. The molecular weight of the main protein was estimated to be 93,000.

  • PDF

Studies on the Development of Food Resources from Waste Seeds -I. Chemical Composition of Grape Seed- (폐엽종실(廢棄種實)의 식량자원화(貪糧資源化)에 관(關)하여 -제(第) 1 보(報) : 포도씨의 화학적(化學的) 조성(組成)-)

  • Yoon, Hyung-Sik;Kwon, Joong-Ho;Hwang, Joo-Ho;Choi, Jae-Chun;Shin, Dae-Hyn
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.250-256
    • /
    • 1982
  • A series of studies were conducted to find out the possibility of utilizing grape seed as resources of food fats and proteins, and the results of the studies are as follows: The grape seed contained 25.1%, of crude fat and 12.0% of crude protein. The lipid, fractions obtained by silicic acid column chromatography were mainly composed of about 95.5% neutral lipid, whereas compound lipid was only 4.5% level. Among the neutral lipid by thin layer chromatography, triglyceride was 91.89%, sterol ester, sterol, diglyceride and free fatty acid were 3.24%, 2.87%, 1.20% and 0.80%, respectively The predominant fatty acids of total and neutral lipids were linoleic acid $(69.72{\sim}71.72%)$ and oleic acid $18.09{\sim}19.46%)$, but those of glycolipid and phospolipid were linoleic acid $(31.49{\sim}38.18%)$, oleic acid $(20.20{\sim}35.27%)$ and palmitic acid $(26.80{\sim}39.98%)$. The major fatty acids of triglyceride separated from neutral lipid were oleic acid (43.08%), linoleic acid (38.42%) and palmitic acid (11.60%). The salt soluble protein of grape seed was highly dispersible in 0.02M sodium phosphate buffer containing about 1.0M $MgSO_4$, and the extractability of seed protein was 31%. Glutamic acid was the major amino acid in salt soluble protein, followed by arginine and aspartic acid. The electrophoretic analysis showed 3 bands in grape seed protein, and the collection rate of the main protein fraction purified by Sephadex G-100 and G-200 was 82%. Glutamic acid, aspartic acid and arginine were the major amino acids of the main grape seed protein. The molecular weight for the main protein of the grape seed was estimated to be 81,000.

  • PDF

Optimal Extraction Condition of Anthocyanins in Soybean (Glycine max) with Black Seed Coats (검정콩 종피 함유 안토시아닌의 최적 추출조건)

  • Choung, Myoung-Gun;Hwang, Young-Sun;Lee, Hyeon-Jin;Choi, Su-San-Na;Lim, Jung-Dae;Kang, Sung-Taeg;Han, Won-Young;Baek, In-Youl;Kim, Hyeun-Kyeung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.110-117
    • /
    • 2008
  • Soybeans (Glycine max) with a black seed coat have been widely utilized as food source and as a medicinal herbs in Korea. The pigmentation in the seed coat of black soybean is due to accumulate anthocyanins in the epidermis palisade layer. The anthocyanin content and composition of the black soybean seed coat are considered as a standard. of quality evaluation of black soybean. The main objective of this study was to investigate the optimal condition for an extraction method of anthocyanins and compare anthocyanin quantity and composition within black soybean varieties and germplasms. In the test of extraction solvent, absorbance at 530 nm and Hunter's a value were increased as increasing the concentration of MeOH, but Hunter's Land b values were the exact opposite of absorbance and Hunter's a values. There was no significant difference for anthocyanin contents from 1% HCl - $H_2O$ to 1% HCl - 80% MeOH. In the aspects of anthocyanin contents and HPLC peak resolution, 1% HCl - 20% MeOH extraction solution was the most suitable solvent. Among the 5 kinds of extraction method using 1% HCl - 20% MeOH solution, the anthocyanin contents of room temperature extraction at 72 h was the highest among the methods. High extraction temperature, sonication and reflux method influenced on the decrease of anthocyanin contents because of breakdown of anthocyanins. There was no significant difference for extraction time between 12 h and 24 h. However, the optimal extraction condition were at room temperature for 12 h. The anthocyanin contents in seed coats of black soybean were determined on the basis of HPLC peak area at 530 nm. Ten black soybean varieties and germplasms were tested with optimal conditions founded in this study. On the basis of antocyanin component, these can be classified into three groups; C3G, C3G + D3G and C3G + D3G + Pt3G. The total anthocyanin content in seed coats ranged from 1.58 to 10.62 mg/g of seed. The total anthocyanin content of the variety "Geomjeongol" was about 7 times higher than that of variety "Heugchong". Information for extraction method and diversity in antocyanin of soybean seed coats can be used for future research for germplasm evaluation and development of high quality black soybean varieties.

Experimental Design of S box and G function strong with attacks in SEED-type cipher (SEED 형식 암호에서 공격에 강한 S 박스와 G 함수의 실험적 설계)

  • 박창수;송홍복;조경연
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.123-136
    • /
    • 2004
  • In this paper, complexity and regularity of polynomial multiplication over $GF({2^n})$ are defined by using Hamming weight of rows and columns of the matrix ever GF(2) which represents polynomial multiplication. It is shown experimentally that in order to construct the block cipher robust against differential cryptanalysis, polynomial multiplication of substitution layer and the permutation layer should have high complexity and high regularity. With result of the experiment, a way of constituting S box and G function is suggested in the block cipher whose structure is similar to SEED, which is KOREA standard of 128-bit block cipher. S box can be formed with a nonlinear function and an affine transform. Nonlinear function must be strong with differential attack and linear attack, and it consists of an inverse number over $GF({2^8})$ which has neither a fixed pout, whose input and output are the same except 0 and 1, nor an opposite fixed number, whose output is one`s complement of the input. Affine transform can be constituted so that the input/output correlation can be the lowest and there can be no fixed point or opposite fixed point. G function undergoes linear transform with 4 S-box outputs using the matrix of 4${\times}$4 over $GF({2^8})$. The components in the matrix of linear transformation have high complexity and high regularity. Furthermore, G function can be constituted so that MDS(Maximum Distance Separable) code can be formed, SAC(Strict Avalanche Criterion) can be met, and there can be no weak input where a fixed point an opposite fixed point, and output can be two`s complement of input. The primitive polynomials of nonlinear function affine transform and linear transformation are different each other. The S box and G function suggested in this paper can be used as a constituent of the block cipher with high security, in that they are strong with differential attack and linear attack with no weak input and they are excellent at diffusion.

Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds (산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF

The Effect of Sodium Alginate of Osmotic Pellet on Drug Release (알긴산 나트륨의 코팅이 삼투정 펠렛의 약물방출에 미치는 영향)

  • Youn, Ju-Yong;Ku, Jeong;Lee, Soo-Young;Kim, Moon-Suk;Lee, Bong;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2008
  • Osmotic pellet, which consisted of water-swellable seed layer, drug layer, and porous membrane layer, has been widely utilized in oral drug delivery system. In this work, we describe the preparation of osmotic pellet with nifedipine as model drug and a mixture of cellulose acetate (CA) and Eudragit RS as membrane layer, and then examined the drug release behavior on the variation of the thickness change of membrane layer (CA and Eudragit RS) and release media. Furthermore, we examined the nifedipine release behavior using sodium alginate as a potential membrane candidate. Osmotic pellet was obtained in the quantitative yield by fluidized bed coater. Osmotic pellet exhibited the round morphology and the size ranging $1500{\sim}1700{\mu}m$ in SEM. The nifedipine release decreased as the thickness of membrane layer (CA and Eudragit RS) increased. In addition, it observed that there is difference of release amount in between intestinal juice (pH 6.8) and gastric juice (pH 1.2). In the case of osmotic pellet coated with sodium alginate, nifedipine release behavior depended on the crosslinking of sodium alginate layer. In conclusion, we found that various membrane layers could control the release amount of nifedipine.