• Title/Summary/Keyword: Sedimentary Environment

Search Result 336, Processing Time 0.03 seconds

Deposition and Sedimentology of the Marine and Nonmarine Sedimentary Rocks of the Pyung-Ahn Group, Kangweondo, Korea (한국 고생대 후기의 평안층군 퇴적암(해성기원 및 육성기원)에 관한 퇴적작용과 퇴적환경 연구)

  • 박용안;최강원;김진호
    • The Korean Journal of Quaternary Research
    • /
    • v.3 no.1
    • /
    • pp.69-85
    • /
    • 1989
  • The depositional environments of the Pyung-Ahn Group sedimentary rocks, Jeongseon-Kun, Kangweondo, Korea are investigated. The environments are understood to be characteristic transitional from a typical shallow marine to a typical continental environment. Such transitional conditions are also understood in various parts of Quaternary and modern environment on the earth. In particular, the absence of detrital feldspar sand grains in the Manhang and Keumcheon Formation Sandstone body is described firstly in Korea, and the fact and possible mechanism are discussed.

  • PDF

Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay (천수만 황도 갯벌의 퇴적환경)

  • Woo, Han Jun;Choi, Jae Ung;Ryu, Joo-Hyung;Choi, Song-Hwa;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.53-67
    • /
    • 2005
  • Cheonsu bay, which is typically a semi-closed type, is characterized by various environments such as channels, sand bars, small islands and tidal flats. The construction of Seosan A and B sea dikes from 1983 to 1985 might continuously change sedimentary environments in the northern part of the bay. In order to investigate sedimentary environment, surface and core sediments were sampled at the Hwangdo tidal flat and adjacent sea in June and October 2003. The surface sediments consisted of five sedimentary facies. Generally, the surface sediments in October were changed coarser on the tidal flat and little changed in the subtidal area compared to those in June 2003. Sedimentary facies analysis of three core sediments suggested that wave and tidal current were relatively strong in the tidal flat near Hwangdo, whereas the energy was relatively low in the tidal flat near channel. Sediment accumulation rates in the Hwangdo tidal flat during 11 months indicated that sediments deposited in the central part, whereas eroded in eastern and western sides of the tidal flat. These caused that sea dike changed tidal current patterns and sediment supplies.

  • PDF

Formation and sedimentary environment of loess-paleosolsequence in the Jincheon Basin, Chungbuk Province, Korea (진천분지 뢰스-고토양 연속층의 형성과 퇴적 환경)

  • Yoon, Soon-Ock;Park, Chung-Sun;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.1-14
    • /
    • 2013
  • This study aims to investigate the formation and sedimentary environment including formative period, grain composition and climate change from loess-paleosol sequence deposited on a gravel bed of river terrace in the Jincheon Basin, Chungbuk Province. The Jincheon section consists downward of a surface layer, loess-paleosol sequence, transitional layer I, transitional layer II and gravel bed. It can be suggested from the OSL age dating that the sequence was deposited during MIS 6 to 4. The sequence can be divided into four horizons based on the variation in the magnetic susceptibility values. Grain size analysis reveals that the sequence indicates similar properties of grain size to loess deposits in Korea and especially, the Y values in the sequence are lower than those in the loess and paleosol horizons in the Chinese Loess Plateau and similar to those in the Red Clay in the Chinese Loess Plateau and Xiashu loess in the lower reaches of the Yangtze River. These Y values in the sequence can be attributed to the remote source and/or experience of intensive weathering process after deposition in the Korean Peninsula.

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.

Sedimentary Environmental Change and the Formation Age of the Damyang Wetland, Southwestern Korea (한국 남서부 담양습지의 퇴적환경 변화와 형성시기 연구)

  • Shin, Seungwon;Kim, Jin-Cheol;Yi, Sangheon;Lee, Jin-Young;Choi, Taejin;Kim, Jong-Sun;Roh, Yul;Huh, Min;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 2021
  • Damyang Wetland, a riverine wetland, has been designated as the first wetland protection area in South Korea and is a candidate area for the Mudeungsan Area UNESCO Global Geopark. The Damyang Wetland area is the upstream part of the Yeongsan River and is now a relatively wide plain. To reconstruct the sedimentary environment around the Damyang Wetland, core samples were obtained, and sedimentary facies analysis, AMS and OSL age dataings, grain size, and geochemical analyses were carried out. In addition, comprehensive sedimentary environment changes were reconstructed using previous core data obtained from this wetland area. In the Yeongsan River upstream area, where the Damyang Wetland is located, fluvial terrace deposits formed during the late Pleistocene are distributed in an area relatively far from the river. As a gravel layer is widely distributed throughout the plains, Holocene sediments were likely deposited in a braided river environment when the sea level stabilized after the middle Holocene. Then, as the sedimentary environment changed from a braided river to a meandering river, the influx of sand-dominated sediments increased, and a floodplain environment was formed around the river. In addition, based on the pollen data, it is inferred that the climate was warm and humid around 6,000 years ago, with wetland deposits forming afterward. The the trench survey results of the river area around the Damyang Wetland show that a well-rounded gravel layer occurs in the lower part, covered by the sand layer. The Damyang Wetland was likely formed after the construction of Damyang Lake in the 1970s, as muddy sediments were deposited on the sand layer.

Preliminary Research of the Sedimentary Environment in Bupyeng Reservoir Region, Soyang Lake in Chuncheon - Focus on Sentinel-2 Satellite Images and in-situ data - (춘천시 소양호 상류 부평지구의 퇴적환경에 대한 선행연구 - 현장조사와 위성영상자료를 중심으로 -)

  • Kim, GeonYoung;Kim, Dain;Kim, TaeHun;Lee, JinHo;Jang, YoSep;Choi, HyunJin;Shim, WonJae;Park, SungJae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1119-1130
    • /
    • 2018
  • Soyang Lake has been contributing to economic growth by preventing flood damage in the metropolitan area, the water level in the middle to upper flow of lake has been greatly decreased due to the drought in 2015. In order to restore the existing flow rate, Bupyungbo has been built in Bupyeong-ri, Shin Nam-myeon, Inje-gun to cause artificial changes on the sedimentary environment of Bupyeong freshwater region. Therefore, this study intends to confirm the changes of sedimentary environment since Bupyeongbo has been utilized. For this study, we used the Sentinel-2 satellite image data periodically to measure the dimension of water according to the volume of water kept near Bupyung district and analyzed the particle size and the percentage of water content of the sediments through field study. The Sentnel-2 satellite images showed us how the water surface has been changed and that during the period from September 2017 to October 2018, the minimum and maximum area of water surface was observed in June 2018 and in January 2018, respectively. In addition, we find that the smaller being the particle size, the higher having the water content and that there is higher the correlation between the water content and the grain size of the sediment layer. Hereafter, if we will acquire the drone images at Bupyung district, we expect that we will be able to measure the distribution of sediments in the same area according to different time periods and observe various kinds of sediment through field work.

Mass Balance of Finfish Cage Farm in South Korea (어류가두리 양식장의 물질수지 산정)

  • Bo-Ram Sim;Hyung Chul Kim;Sang-Pil Yoon;SokJin Hong;Woosung Jung;Sungchan Kang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.473-483
    • /
    • 2023
  • This study was conducted to better understand the impact of marine fish farming by estimating mass balances of carbon and nitrogen. According to the results, 94.55% of carbon and 95.66% of nitrogen inputs were from the feed supplied in the farm. Of the total carbon emissions in the farm, 47.28% was due to fish respiration, which was subsequently released into seawater. Advection and diffusion in the farm contributed to 30.29% of the carbon released. In the case of nitrogen, 50.70% of the nitrogen released into the seawater was produced by fish excreta, and 31.37% was advected and diffused into the system. The sedimentary environment received 3.82% and 3.10% of the carbon and nitrogen released from the farm, respectively. The fish feed used for healthy growth contained 11.64% carbon and 9.17% nitrogen. Since the feed type was floating pellets, the load released into the sedimentary environment was relatively lower than that released into the marine environment. These findings suggest that the identification of an optimal fish feed that respects fish physiology and preserves a healthy ecology is critical for the future of aquaculture. Furthermore, ecosystem-based aquaculture systems that decrease environmental burden, while endeavoring to improve environmental health, are required.

Seismic Stratigraphy and Sedimentary Environment of the Dukjuk-Do Sand Ridge in Western Gyeonggi Bay, Korea (경기만 서부 덕적도 사퇴의 탄성파층서 및 퇴적환경 연구)

  • Lee, Yoon-Oh;Choi, Sang-Il;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.9-21
    • /
    • 2014
  • We examined high-resolution seismic data, side scan sonar data, surface sediments, and vibrocore samples from a sand ridge off the western part of Dukjuk-Do in Gyeonggi Bay, with the aim of interpretation of seismic stratigraphy and sedimentary environment. Based on the seismic data, the deposited sands are divided into three sedimentary units. 14C age data indicate that the top sequence (sequence I) formed at 5000-6000 yr BP, when a transgression resulted in strong shifting tides. Analyses of the vibrocore samples indicate that sequence II is a paleo-mudflat layer of intertidal sediments dominated by mud. Sequence III consists of terrestrial sediments that are presumed to have been deposited at the end of the Pleistocene, unconformably overlying the acoustic bedrock and Mesozoic granite. The side scan sonar data indicate that sand waves were formed on the seabed on top of the sand ridge. Generally, this is the direction of $N20^{\circ}E$, which coincides with the direction of tidal flow. Sand ripples occur away from the top of the sand ridge and are distributed homogeneously across a sandy slope. Vibrocore analyses indicate that the surface sediments and core sediments (samples VC-1, -2, and -3) are homogeneous, without any internal structures, and are characterized by a mixture of medium and fine sand (1-$2{\phi}$), respectively.