• Title/Summary/Keyword: Sediment transport formulas

Search Result 23, Processing Time 0.03 seconds

Sensitivity Analysis of Bed Changes for Different Sediment Transport Formulas Using the HEC-6 Model - The Lower Nakdong River (HEC-6 모형을 이용한 유사량 공식에 따른 하상변동 민감도 분석 - 낙동강 하류를 대상으로)

  • Jeong, Won-Jun;Ji, Un;Yeo, Woon-Kwang
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1219-1227
    • /
    • 2010
  • In this study, the sensitivity analysis of bed changes due to the various sediment transport equations have been conducted for 80 km reach of the Lower Nakdong River using the HEC-6 which is one dimensional numerical model. The bed elevation changes according to the different sediment transport formulas were compared and analyzed quantitatively. As a result of the numerical simulation, the final bed elevation calculated by Engelund and Hansen(1967), Ackers and White(1973), and Yang(1979) formulas was similar to one another in configuration. The bed change simulated by Engelund and Hansen(1967) were greatest among them, for example, 5.5 m deposition and 2.9 m erosion for 100 years. Also, in the case of Toffaleti (1969) equation, the maximum bed deposition of 8.04 m after 100 years was induced at the 73 km location upstream of the Nakdong River Estuary Barrage. Meyer-Peter-M$\ddot{u}$ller(1948) and Wilcock(2001) formulas produced the deposition only at the upstream end and there was little bed change in the downstream area. The unreal bed configuration of continuously up and down pattern was simulated by Laursen(1958) transport equation.

Comparative Evaluation of Some Selected Sediment Transport Formulas (하천 유사량 공식들의 비교평가)

  • Yu, Kwone Kyu;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.67-75
    • /
    • 1990
  • Performances of a total of 6 selected sediment transport formulas including Engelund & Hansen(EH)'s, Ackers & White(AW)'s, Yang(YN)'s, Brownlie(BR)'s, Karim & Kennedy (KK)'s, and Rijn(RJ)'s ones, which have been known to be relatively reliable, were tested using the 1,399 measured sediment discharge data points of the 20 rivers selected from Brownlie's compendium of sediment discharge. The calculated results were plotted with the input parameters such as the unit discharge, mean velocity, flow depth, energy slope, and median diameter respectively, and trend of each formula's performance was analyzed. These analyses revealed that, in general, EH's and RJ's formulas are more reliable, BR's, AW's, and KK's ones are moderately reliable, and YN's one is less reliable. AW's formula drastically overestimates sediment discharge for fine sediment(D<0.15mm), and YN's one under-estimates sediment discharge for streams with large water discharge(q>5 cms/m).

  • PDF

A Study on Estimation by Depth Integrating Method of Sediment Discharge (수심적분법에 의한 유사량 추정연구)

  • 서승덕;김활곤;우효섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.90-97
    • /
    • 1996
  • In Korea, total sediment discharge of a river has been estimated simply by using certain sediment transport formulas including, among others, Einstein's formula. Those formular, however, are known not to be reliable enough for the result calculated by them to be used directly to river planning and management. Therefore, the study used the Modified Einstein Procedure to the estimation of total sediment discharge, because this method is reliable estimated by measurement. Here, measurement of sediment discharge used depth integrating method. The major results obtained from the study for estimation by depth integrating method of sediment discharge in Naeseong stream are as follow; 1 The sedeiment characteristics of Naeseong stream are; The distribution of sediment grain size shows that silt and clay are 55% and sand is 45%. and the bed load sediment grain size is constituted that sand contained with the grain size from O.062mm to 2.0mm is 80% 2. The sediment rating formulas derived from the regression analysis between the sediment discharge and flow discharge are; Seogpo-Gyo : Qs=$0.017 \times 10^{-4} Q^{2.352}$, where discharge is l0cms $0.074 \times 10^{-4} Q^{2.066}$, where discharge is l0cms

  • PDF

Evaluation of Selected Sediment Transport Formulas Giving an Equilibrium Sediment Discharge (평형유사량을 주는 유사이동 공식의 평가)

  • Lee Sung-ho
    • KCID journal
    • /
    • v.1 no.2
    • /
    • pp.48-59
    • /
    • 1994
  • 여러가지의 유사이동 공식들은 각 저자들의 실험실이나 현장실측치를 바탕으로 발표되었다. 그리고 저자에 따라서 본인들의 공식의 적용한계를 명백히 명시한 것도 있지만 그렇지 않은 것도 많다. 동일한 수리학적 조건에서 이 공식들이 현장에서 적용될 때 이 공식에 의한 유사량은 공식에 따라서 유사한 것도 있고 차이가 많이 나는 것도 있다. 특히 St. Venant식(물의 연속 방정식과 물의 운동량 방정식)과 유사 연속방정식을 연립하여 컴퓨터 모의시험에 이용할 때

  • PDF

The Effect of Directional Dispersion of Frequency Spectrum on the Joint Distribution of Wave Height, Period and Wave Direction (파고, 주기, 파향의 결합확율분포에 미치는 입사파랑의 방향분산성의 영향)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.143-151
    • /
    • 1990
  • The sediment transport in shallow water regions has been studied in various ways and, accordingly, many formulas have been proposed. However, when these formulas are applied practically in the field, they are not sufficient to fully estimate the sediment transport rate yet. The primary reason is how to take into account the effect of irregularities of field waves : wave heights, periods and directions. Therefore, it is necessary to investigate stochastic and kinematic characteristics of waves in three dimensional random seas in order to more accurately estimate it. In particular, the asymmetrical properties of directional spectrum become significant and play an important role in various phenomena in a shallow water region. In this study, their effects of incident waves the joint distribution of wave heights, periods and directions are investigated through field measurements.

  • PDF

Numerical Analysis for Bed Changes due to Sediment Transport Capacity Formulas and Sediment Transport Modes at the Upstream Approached Channel of the Nakdong River Estuary Barrage (낙동강하구둑 상류 접근수로에서의 유사량 공식 및 유사 이송형태에 따른 하상변동 수치모의에 관한 연구)

  • Ji, Un;Yeo, Woon-Kwang;Han, Seung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.543-557
    • /
    • 2010
  • The effects of the selection for sediment transport equations and advection-diffusion equations according to different sediment transport modes on the modeling results of bed changes were analyzed using the CCHE2D and compared with field data in this paper. The most suitable sediment transport equation and sediment transport mode for advection-diffusion equation were suggested for the upstream approached channel of the Nakdong River Estuary Barrage. The bed changes simulated by the Engelund and Hansen formula were very small in the modeling case for the low and high flow discharges compared with the case of the Ackers and White formula. Also, the numerical modeling with the actual hydraulic event in 2002 presents that the bed change result with the bed load transport type for advection-diffusion equation was close to the field measurement more than the suspended load type.

Structural and Layout Design Optimization of Ecosystem Control Structures (2) -Characteristics of Subsidence and Burial of Artificial Habitat due to Sediment Transport in Flow Field- (생태계 제어 시설물의 설계 및 배치 최적화(2) -흐름장에서의 인공어초의 침하 및 매몰 특성-)

  • RYU Cheong-RO;KIM Hyeon-Ju;LEE Han-Su;SHIN Dong-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.139-147
    • /
    • 1997
  • Sediment transport around artificial habitat which is induced by the change ol flow due to installation of the structure plays a role not only as a defect function of subsidence and burial but also bottom-environment control function. This study examined the characteristics of local scouring and deposition with sediment sizes, current velocities and installation direction of artificial habitat in flow field. Resultant subsidence and burial processes are investigated and discussed with Reynolds number. Together with sediment number and dimensionless time elapse, prediction formulas are established by combining these relationships. Bottom control function as cultivating effects is discussed with installation direction, and applicability of countermeasures is compared and stone pavement method is recommended.

  • PDF

Estimation of Sediment Transport and Influence Factor for the Prediction of Riverbed Changes (하천유역의 유사량 산정 및 하상변동 예측을 위한 영향인자의 평가분석)

  • Yun, Se-Ui;Lee, Jong-Tae;Jeong, Jae-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.561-570
    • /
    • 1997
  • The feature of this paper is (1) to analyze the characteristics of rainfall-runoff relationship with kinematic wave theory, (2) to study the computational model to estimate the sediment yield, (3) to analyze the effects of bed change by transport formulas and the number of watershed division, and (4) to verify the model application with observation of channel data and measurement of rainfall, runoff, sediment discharge in Pyung-Chang River Basin. The calculated time of concentration of peak discharge occured little earlier than the actual, but the tendency of hydrograph coincided with observation. The shape of sediment hydrographs was similar to the water hydrograph. Based on above results, the applicability of the model was verified in detail. As the number of watershed division increased, the difference between the measured runoff and sediment values and the estimated ones decreased. The result of calculation with Yalin's formula for surface and Acker-White's one for channel gave the best agreement with the measured data among the six selected sediment transport foumulas.

  • PDF

Estimation of sediment deposition rate in collapsed reservoirs(wetlands) using empirical formulas and multiple regression models (경험공식 및 다중회귀모형을 이용한 붕괴 저수지(습지) 비퇴사량 추정)

  • Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.

Analysis of characteristics of sediment transport in sewers by densimetric Froude number (밀도프루드수에 의한 하수관로 침전물 이송 특성 분석)

  • Park, Kyoohong;Lee, Taehoon;Yu, Soonyu;Kang, Byongjun;Hyun, Kirim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • Even though sewers have been conventionally designed to prevent from sediment deposition using a specified minimum velocity or shear stress at a particular depth of flow or with a particular frequency of occurrence, it was appreciated that these methods do not consider the characteristics and concentration of the sediment and the specific hydraulic conditions of the sewer with sediment. In this study, a densimetric Froude number formula was suggested considering particle diameter and volumetric concentration of the sediment as well as flow depth and flowrate, based on several domestic field inspections, which was compared with other formulas proposed by previous investigators. When the sediment concentration was not considered, the calibration coefficient of 0.125-1.5 to the densimetric Froude numbers of this study was needed to obtain the similar ones with previous investigators'. For the densimetric Froude number formula obtained with consideration of sediment concentration, the exponent value of term Cv was almost the same as that of previous results and that of d50/Rh was similar for Fr < 2.2.