• Title/Summary/Keyword: Sediment remediation

Search Result 53, Processing Time 0.02 seconds

Study of nitrate concentration in Najaf Abad aquifer using GIS

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.167-172
    • /
    • 2020
  • The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m x 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.

Application of Montmorillonite as Capping Material for Blocking of Phosphate Release from Contaminated Marine Sediment (해양오염퇴적물 내 인산염 용출차단을 위한 피복소재로서의 몬모릴로나이트 적용)

  • Kang, Ku;Kim, Young-Kee;Hong, Seong-Gu;Kim, Han-Joong;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.554-560
    • /
    • 2014
  • To investigate the applicability of montmorillonite to capping material for the remediation of contaminated marine sediment, adsorption characteristics of $PO{_4}{^{3-}}$ onto montmorillonite were studied in a batch system with respect to changes in contact time, initial concentration, pH, adsorbent dose amount, competing anions, adsorbent mixture, and seawater. Sorption equilibrium reached in 1 h at 50 mg/L but 3 h was required to reach sorption equilibrium at 300 mg/L. Freundlich model was more suitable to describe equilibrium sorption data than Langmuir model. The $PO{_4}{^{3-}}$ adsorption decreased as pH increased, due to the $PO{_4}{^{3-}}$ competition for favorable adsorption site with OH- at higher pH. The presence of anions such as nitrate, sulfate, and bicarbonate had no significant effect on the $PO{_4}{^{3-}}$ adsorption onto the montmorillonite. The use of the montmorillonite alone was more effective for the removal of the $PO{_4}{^{3-}}$ than mixing the montmorillonite with red mud and steel slag. The $PO{_4}{^{3-}}$ adsorption capacity of the montmorillonite was higher in seawater than deionized water, resulting from the presence of calcium ion in seawater. The water tank elution experiments showed that montmorillonite capping blocked well the elution of $PO{_4}{^{3-}}$, which was not measured up to 14 days. It was concluded that the montmirillonite has a potential capping material for the removal of the $PO{_4}{^{3-}}$ from the aqueous solutions.

A Pilot Scale Biostimulation Study for In-situ Remediation of Organic Pollutants and PAHs contained in Coastal Sediment (연안 해역퇴적물에 함유된 유기오염물과 PAHs의 현장정화를 위한 파일럿 규모의 생물활성촉진연구)

  • Bae, Byung-Uk;Woo, Jung-Hui;Subha, Bakthavachallam;Song, Young-Chae
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.441-450
    • /
    • 2016
  • A pilot scale biostimulation experiment was performed under field conditions to degrade organic pollutants and PAHs (Polycyclic Aromatic Compounds) in contaminated coastal sediment. During the experiment, the seawater temperature around the sediment varied from $16.5^{\circ}C$ to $21^{\circ}C$, while the sediment pH was stable at 8.4-8.5. The experiment was conducted over a one year period with a control group and a sample group with a applied biostimulant composed of acetate, sulfate, and nitrate. Chemical oxygen demand decreased 39% in the control group and 79% in the sample group. Volatile solids were reduced from 15 to 7 g/kg in the control group and 2.5 g/kg in the sample group. Out of the 2-, 3- ,4- ,5-, and 6-rings of the 16 vital PAHs, the compound including naphthalene (2-ring), took 2 months to degrade completely, while the degradation efficiency was 55.6% in the control group during the same period. In the case of the 3-ring and 4-ring PAHs, complete degradation in the sample and 46% - 100% degradation in control was observed after one year of the experiment. The 5-ring and 6-ring PAHs were degraded to about 77%-100% in the sample group and 26%-87% in the control group during the one year of the experiment. The study results show that biostimulation is a very effective method to improve the degradation rate of organic pollutants and PAHs (Polycyclic Aromatic Compounds) in contaminated coastal sediment.

A Field Research on Mud Flat Remediation by Biological Treatments (생물학적 처리에 따른 갯벌 복원을 위한 현장 적용성 연구)

  • Cho, Dae-Chul;Bae, Hwan-Jin;Kwon, Sung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3285-3294
    • /
    • 2012
  • A field test on mud flat remediation was carried out in order to observe the effects of the treatments such as microbial dose and an oxygen releasing compound like $CaO_2$. The size of each treatment site was $100m^2$ and the dosage was 3.6 kg per site. The 6 week monitoring showed that pH on two sites was below 7 and ORP increased from .178~-188 mV to .121~-142 mV. In Ignition loss and COD there were no significant changes. Meanwhile nitrogen and phosphorus concentrations changed: ammonia concentration decreased both on control and treatment sites. Nitrate nitrogen decreased more on combined treatment site than on single microbial treatment (11.3% vs. 7.3%) probably because the extra oxygen supplied by $CaO_2$ formed more oxic environment so that the facilitated nitrification might produce more nitrate but the nitrate would be much rapidly released into the water layer out of the sediment. That also explains the total nitrogen reduction(6.1%). Similarly, T-P and $PO_4-P$ reduced by 29% and 31.8%, respectively on combined treatment sites, resulting from the phosphorus release effect though the initial concentrations of the two factors were considerably high.

Comparison of Pipeline and Clamshell Capping Technologies for the Remediation of Contaminated Marine Sediments (해양 오염퇴적물 정화를 위한 원통관과 클램쉘을 이용한 피복 기술의 비교)

  • Kang, Ku;Hong, Seong-Gu;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.195-206
    • /
    • 2017
  • In situ capping technology for marine sediment pollution control has never been applied in South Korea. In this study a pilot project for the capping was carried out in Busan N Harbor. Pipeline and clamshell capping technologies were implemented for the pollution control. Changes of capping shapes, sediment contamination, and the time and costs required for the two constructions were compared. Both the pipeline and clamshell technologies were found to satisfy the target thickness of 50 cm on average. However, the pipeline method did not operate sensitively in terms of change of the sea floor topography, resulting in an uneven shape and a thickness. Organic carbon and ignition loss quite decreased after the pipeline or the clamshell capping while pH showed no significant change. Organic and residual fraction of Cd, Ni, and Zn in the sediments appeared to decrease after all cappings. The pipeline method took a construction time four times as much as the clamshell method. The clamshell method was demonstrated to reduce the construction cost by about 40% compared with the pipeline method. However, a monitoring for all the parameters needs to be conducted at least two years in order to better evaluate an efficiency of the pollution control by these capping constructions.

Electrophoretic Particle Movement in Suspension Considering the Gravitational Settling and Sedimentation of Clayey Soil (중금속으로 오염된 점성토의 동전기영동에 의한 침강 거동에 관한 연구)

  • Lee, Myung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.44-52
    • /
    • 2007
  • Contaminated sediments more than 30 million/$m^3$ is generated from dredging work for harbours and coastal maintenance in Korea. Approximately 300 million/$m^3$ of sediments is dredged to deepen harbours and shipping lanes in US and of which $3{\sim}12million/m^3$ is highly contaminated. Although much is known about technologies for the remediation of heavy metal contaminated soil, much less is known about the treatment of contaminated sediment. In general, negatively charged fine particles will migrate towards positively charged system of electrodes under the influence of electrophoresis. However, the electrically induced migration of colloidal particles contaminated with heavy metals may be hindered by the positively charged heavy metal contaminants adsorbed onto the soil surfaces depending on the contamination level. This paper demonstrates settling behaviour of clayey soil by comparison with electrophoretic particle movement under the effects of heavy metal contamination, applied electric field strength, and its polarity changed by the electrode configuration.

Modeling of Sedimentation and Vertical Dispersion of Coastal Sediment Particles Contaminated with PCBs (PCB로 오염된 연안 퇴적물 입자의 침강 및 연직확산 모델연구)

  • Lee Du Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.1
    • /
    • pp.39-46
    • /
    • 1998
  • This study presents a numerical model that can simulate changes of particle size distribution (PSD) of PCB-contaminated coastal sediments. The developed model has one spatial dimension including sedimentation and vortical dispersion as well as coagulation. The reason for considering the vortical transport mechanisms is to calculate residence time of the particles. Using the model and Initial PSD data based on actual coastal sediments contaminated with PCBs, this study shows results of model simulations. Within 48 hours of the simulation time, the PSD changed significantly and the particles were removed from water in different rates between different particle sizes. It also shows that coagulation can act an important role in this process. The model may be useful in assessing the range of resuspended sediments that can pollute neighboring areas during environmental remediation projects such as dredging.

  • PDF

Sequential Extraction of Heavy Metals in Soils and A Case Study (토양중의 중금속 연속추출방법과 사례연구)

  • Jung, Myung Chae
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.469-477
    • /
    • 1994
  • Many researchers have investigated most representative sequential extraction method using various reagents for determining the chemical forms of metals in soils and sediments. In this paper, a newly modified method for sequential extraction scheme based on Tessier's method by Environmental Geochemistry Research, Centre for Environmental Technology, Imperial College, was introduced and examined. In comparison with Tessier's method, originally designed for sediment analysis by Atomic Absorption Spectrophotometry (AAS), the sequential extraction scheme has been developed for the multi-element analysis by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The partitioning of particulate trace elements was classified into five fractions: (i) exchangeable, (ii) bound to carbonates or specially adsorbed, (iii) bound to Fe and Mn oxides, (iv) bound to organic matter and sulphides and (v) residuals. The experimental results of the pilot study for in-house reference material (HRM2) and certified international standard reference material (SRM2711) using the modified method showed not only reasonable precision and accuracy but also acceptable overall recovery rates. In addition, mine dump soils sampled in the Dalsung Cu-W mine, Korea were prepared and sequentially extracted using the method. Most of Cu was bound to organic matter/sulphides and residual fractions. The dominant fraction of soil Pb and Zn in the study area was found in the residuals. The fraction of Cd showed a wide variation between samples and could be found bound to the carbonates or specially adsorbed, oxides, organic fraction and residuals. The recovery rates of Cd, however, were poor due to relatively low Cd concentrations in soils. The heavy metals in these mine dumps appear to be in the more inert forms and should not be readily bioavailable. The soils, however, had very low pH values (average 4.1) and had sandy textures; consequently, rapid infiltration of rainfall may increase leaching of Zn and Cd which were found to be around 5 to 10% of the exchangeable fraction. As a result of the investigation of this study, it has been strongly recommended that these mine waste materials should still be considered a significant contaminant source and will need environmental remediation to prevent pollutants from being released into the environment.

  • PDF

Effect of Humic acid on the Distribution of the Contaminants with Black Shale (휴믹산이 black shale과 오염물질의 분포에 미치는 영향에 대한 연구)

  • Min, Jee-Eun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.670-675
    • /
    • 2004
  • Humic acids are macromolecules originated from natural water, soil, and sediment. The characteristics of humic acid enable it to change the distribution of metals as well as many kinds of organic contaminants and to determine the sorption of them from soil solution. To see the effect of humic acid on the removal rate of organic contaminants and heavy metals, batch-scale experiments were performed. As a natural geosorbent, black shale was used as a sorbent media, which showed hight sorption capacity of trichloroethylene (TCE), lead, cadmium and chromium. The effect of sorption-desorption, pH, ionic strength and the concentration of humic acid was taken into consideration. TCE sorption capacity by black shale was compared to natural bentonite and hexadecyltrimethylammonium (HDTMA) modified bentonite. The removal rate was good and humic acid also sorbed onto black shale very well. The organic part of humic acid could effectively enhance the partition of TCE and it act as an electron donor to reduce Cr(VI) to Cr(III). Cationic metal of Pb(II) and Cd(II) also removed from the water by black shale. With 3 mg/L of humic acid, both Pb(II) and Cd(II) were removed more than without humic acid. That could be explained by sorption and complexation with humic acid and that was possible when humic acid could change the hydrophobicity and solubility of heavy metals. Humic acid exhibited desorption-resistivity with black shale, which implied that black shale could be an alternative sorbent or material for remediation of organic contaminants and heavy metals.

Simulation Model of Dual-Species Biofilm Growth in Hydrodynamic Flow (유체 흐름 안에서 두 종의 생물막 성장 시뮬레이션 모델)

  • Jeon, Won-Ju;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.97-105
    • /
    • 2011
  • In rivers and streams, biofilms are thin layers of greenish-brown slime attached to rocks, plants, and other surfaces. Biofilms play key roles in primary production and cycling of nutrients, water quality remediation, suspended sediment removal, and energy flow to higher trophic levels. In the present study, we developed a two-dimensional cellular automata model to simulate mixed biofilms of toxin-sensitive and toxin-producing species in hydrodynamic flow. The flow was generated by a stochastic process for uniform flow and by using the Navier-Stokes equation for non-uniform flow. Minimized local rules governing reproduction and mortality of the species were executed in the self-organizing processes to elucidate interactions between toxin-producing and toxin-sensitive species in competition over nutrients. We briefly discuss the morphology of the simulated biofilm under different flow conditions.