• Title/Summary/Keyword: Sediment Volume

Search Result 149, Processing Time 0.026 seconds

Numerical Experiment of Debris Flow and Driftwood Behavior with Entrainment Erosion (연행침식을 고려한 토석류와 유목거동의 수치실험)

  • Kang, Tae Un;Jang, Chang-Lae;Kimura, Ichiro;Lee, Nam Joo
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.141-153
    • /
    • 2022
  • In this study, a numerical model of debris flow considering driftwood and entrainment erosion is developed. Subsequently, numerical simulations based on the observation data of the 2011 Mt. Umyeon are performed. To develop the debris flow model, the Nays2DFlood model, which is a flooding model based on the shallow water equation, is coupled with the transport diffusion of mixed sediment concentration, debris flow bottom shear stress, and entrainment erosion modules. The simulation closely reproduced the depth, flow velocity, and debris flow volume of Mt. Umyeon. In addition, the reproducibility of the simulation result with driftwood is more accurate than that without driftwood. The results of this study can facilitate in establishing measures to reduce debris disasters, thus alleviating the current increase in debris damage due to climate change.

Beach Deformation Caused by Typhoon Chaba in 2016 Along the Manseongri Coast Related Coastal Improvement Project (연안정비사업이 수행된 만성리 해수욕장에서 2016년 태풍 차바에 의한 해빈변화)

  • Park, Il Heum;Park, Wan-Gyu;Jeong, Seung Myong;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.710-718
    • /
    • 2017
  • After Typhoon Chaba (No.18, 2016) collided with Manseongri Beach, a coastal improvement project was carried out since strong external forces such as waves, storm surges and wave-induced currents were observed to cause beach deformation. The shoreline, beach area and beach volume were periodically surveyed. On the basis of this field data, the beach deformation that occurred at Manseongri Beach has been formally described. Over three months after beach nourishment work began, the beaches were gradually stabilized in terms of natural external forces. However, this stabilization was interrupted by Typhoon Chaba. After two months of typhoon weather, the beach returned to a stable state and no changes were observed until one year after the beach recovery work. Just after the typhoon hit, the shoreline receded from the northern side, where no reduction of external forces occurred, while the rear beach area submerged by breakwater advanced. Also, the beach volume decreased by $3,395m^3$ after the typhoon, due to erosion that occurred on the northern beach, with deposition taking place on the southern backshore area. Therefore, it has been concluded that the coastal improvement project undertaken at Manseongri Beach has significantly contributed to conservation in areas of wave-dominant sediment transport.

Analysis of Debris Flow Hazard Zone by the Optimal Parameters Extraction of Random Walk Model - Case on Debris Flow Area of Bonghwa County in Gyeongbuk Province - (Random Walk Model의 최적 파라미터 추출에 의한 토석류 피해범위 분석 - 경북 봉화군 토석류 발생지를 대상으로 -)

  • Lee, Chang-Woo;Woo, Choongshik;Youn, Ho-Joong
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.664-671
    • /
    • 2011
  • Random Walk Model can predict the sediment areas of debris flow but it must be extracted three parameters fitted topographical environment. This study developed the method to extract the optimal values of three parameters - Once flowing volume, Stopping slope and Gravity weight - for Random Walk Model. And the extracted parameters were validated by aerial photographs of the debris flowed area. To extract the optimal parameters was randomly performed, limiting the range values of three parameters and developing an accuracy decision method that is called the rate of concordance. The set of the optimal parameters was decided on highest the rate of concordance and a consistency. As a result, the optimal parameters in Bonghwa county were showed that the once flowing volume is $1.0m^3$, the stopping slope is $4.2^{\circ}$ and the gravity weight is 2 when the rate of concordance is -0.2. The validating result of the optimal parameters showed closely that the rate of concordance is average -0.2.

A Seismic Study on Muddy Sediment Deposits in the Northern Shelf of the East China Sea (동중국해 북부대륙붕에 발달한 니질 퇴적체의 탄성파 연구)

  • Choi Dong-Lim;Lee Tae-Hee;Yoo Hae-Soo;Lim Dhong-Il;Huh Sik;Kim Kwang-Hee
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.633-642
    • /
    • 2005
  • We present the sedimentary sequence and distribution pattern of the late Holocene muddy deposits in the northern East China Sea shelf using the high-resolution 'Chirp' profiles. The seismic sedimentary sequence overlying acoustic basement (basal reflector-B) can be divided into two depositional units (Unit 1 and 2) bounded by erosional bounding surface (mid reflector-M). The lower Unit 1 above basal reflector-H is characterized by the acoustically parallel to subparallel reflections and channel-fill facies. The upper Unit 2, up to 7 m in thickness, shows seismically semi-transparent seismic facies and lenticular body form. On the base of sequence stratigraphic concept, these two sediment units have developed during transgression and highstand period, respectively, since the last sea-level lowstand. The transgressive systems tract (Unit 1) lie directly on the sequence boundary (reflector B) that have farmed during the last glacial maximum. The transgressive systems tract in this study consists mostly of complex of delta, fluvial, and tidal deposits within the incised valley estuary system. The maximum flooding surface (reflector M) corresponding to the top surface of transgressive systems tract is obviously characterized by erosional depression. The highstand systems tract (Unit 2) above maximum flooding surface is made up of the mud patch filled with the erosional depression. The high-stand mud deposits showing a circle shape just like a typhoon symbol locates about 140 km off the south of Cheju Island with water depth of $60\~90m$. Coverage area and total sediment volume of the mud deposits are about $3,200km^2$ and $10.7\times10^9\;m^3$, respectively. The origin of the mud patch is interpreted as a result of accumulating suspended sediments derived from the paleo-Yellow and/or Yangtze Rivers. The circular distribution pattern of the mud patch appears to be largely controlled by the presence of cyclonic eddy in the northern East China Sea.

How effective has the Wairau River erodible embankment been in removing sediment from the Lower Wairau River?

  • Kyle, Christensen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.237-237
    • /
    • 2015
  • The district of Marlborough has had more than its share of river management projects over the past 150 years, each one uniquely affecting the geomorphology and flood hazard of the Wairau Plains. A major early project was to block the Opawa distributary channel at Conders Bend. The Opawa distributary channel took a third and more of Wairau River floodwaters and was a major increasing threat to Blenheim. The blocking of the Opawa required the Wairau and Lower Wairau rivers to carry greater flood flows more often. Consequently the Lower Wairau River was breaking out of its stopbanks approximately every seven years. The idea of diverting flood waters at Tuamarina by providing a direct diversion to the sea through the beach ridges was conceptualised back around the 1920s however, limits on resources and machinery meant the mission of excavating this diversion didn't become feasible until the 1960s. In 1964 a 10 m wide pilot channel was cut from the sea to Tuamarina with an initial capacity of $700m^3/s$. It was expected that floods would eventually scour this 'Wairau Diversion' to its design channel width of 150 m. This did take many more years than initially thought but after approximately 50 years with a little mechanical assistance the Wairau Diversion reached an adequate capacity. Using the power of the river to erode the channel out to its design width and depth was a brilliant idea that saved many thousands of dollars in construction costs and it is somewhat ironic that it is that very same concept that is now being used to deal with the aggradation problem that the Wairau Diversion has caused. The introduction of the Wairau Diversion did provide some flood relief to the lower reaches of the river but unfortunately as the Diversion channel was eroding and enlarging the Lower Wairau River was aggrading and reducing in capacity due to its inability to pass its sediment load with reduced flood flows. It is estimated that approximately $2,000,000m^3$ of sediment was deposited on the bed of the Lower Wairau River in the time between the Diversion's introduction in 1964 and 2010, raising the Lower Wairau's bed upwards of 1.5m in some locations. A numerical morphological model (MIKE-11 ST) was used to assess a number of options which led to the decision and resource consent to construct an erodible (fuse plug) bank at the head of the Wairau Diversion to divert more frequent scouring-flows ($+400m^3/s$)down the Lower Wairau River. Full control gates were ruled out on the grounds of expense. The initial construction of the erodible bank followed in late 2009 with the bank's level at the fuse location set to overtop and begin washing out at a combined Wairau flow of $1,400m^3/s$ which avoids berm flooding in the Lower Wairau. In the three years since the erodible bank was first constructed the Wairau River has sustained 14 events with recorded flows at Tuamarina above $1,000m^3/s$ and three of events in excess of $2,500m^3/s$. These freshes and floods have resulted in washout and rebuild of the erodible bank eight times with a combined rebuild expenditure of $80,000. Marlborough District Council's Rivers & Drainage Department maintains a regular monitoring program for the bed of the Lower Wairau River, which consists of recurrently surveying a series of standard cross sections and estimating the mean bed level (MBL) at each section as well as an overall MBL change over time. A survey was carried out just prior to the installation of the erodible bank and another survey was carried out earlier this year. The results from this latest survey show for the first time since construction of the Wairau Diversion the Lower Wairau River is enlarging. It is estimated that the entire bed of the Lower Wairau has eroded down by an overall average of 60 mm since the introduction of the erodible bank which equates to a total volume of $260,000m^3$. At a cost of $$0.30/m^3$ this represents excellent value compared to mechanical dredging which would likely be in excess of $$10/m^3$. This confirms that the idea of using the river to enlarge the channel is again working for the Wairau River system and that in time nature's "excavator" will provide a channel capacity that will continue to meet design requirements.

  • PDF

The Selection of Appropriate Sampler for the Assessment of Macrobenthos Community in Saemangeum, the West Coast of Korea (새만금 외해역에서 대형 저서동물 군집 조사를 위한 적정 채집기의 선택)

  • 유재원;김창수;박미라;이형곤;이재학;홍재상
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.285-294
    • /
    • 2003
  • To select an appropriate sampler for the environmental monitoring survey in coastal waters of Saemangeum, Jeollabuk-do, a macrobenthic sampling was conducted in April 2002. Employed samplers were dredge (type Charcot), a semi-quantitative sampler and Smith-McIntyre (SM) and van Veen grab (VV) as quantitative ones. One haul was tried for dredge and 3 replicates (0.1 ㎡${\times}$3) for SM and W at each of 11 stations. Comparisons of sediment volume in sampler bucket and of precision of biological parameters (i.e., density, biomass, species number and diversity index, H') were made between SM and VV. Sediment volume was significantly different (SM > VV) at p-value of 0.0050 (paired t-test) and, in average, 3 replicate samples of SM and VV satisfied a precision level of 0.2 by applying 4th root transformation. Patterns of observed and expected species numbers and H' were compared. Dredge-VV samples showed higher affinity than any other pair. Several dominant species in the area were underestimated in dredge samples (e.g., polychaete Heteromastus filiformis. Aricidea assimilis etc.). Quantifying the agreement pattern of multi-species responses was accomplished by estimating correlations between similarity matrices. Correlation between dredge and VV was slightly higher, but near-per-fect matches were found in general. Different ranks and composition among principal species lists were presumably linked to the effect of penetration depth that differs among samplers. Lower level of some species' abundance in VV samples (ca. 50% compared with those of SM) was explained in this context. It seem appropriate to regard the effect as a probable cause of relatively higher correlations in dredge-VV, Overall bio-logica1 features indicated that a better choice could be SM in situations of requiring high data quality. The others work well, however, on observing and defining faunal characteristics and their capability cannot be questionted if we do not expect a first-order quality.

Environmental Management of Marine Cage Fish Farms using Numerical Modelling (수치모델을 이용한 해상어류가두리양식장의 환경관리 방안)

  • Kwon, Jung-No;Jung, Rae-Hong;Kang, Yang-Soon;An, Kyoung-Ho;Lee, Won-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.4
    • /
    • pp.181-195
    • /
    • 2005
  • To study the effects of aquaculture activity of marine cage fish farms on marine environment, field researches including hydrography, sediment, benthos and trap experiment at the marine cage fish farms(Site A) around estuaries of Tongyeong city were carried out during June $26\~27$, 2003. A simulation using numerical model-DEPOMOD was conducted to predict the solid deposition from fish cage and to assess the probable solid deposition, and the efficiency of environmental management of marine cage fish farms was studied. The marine cage fish farms cultured mainly common sea bass (Lateolabrax japonicus), red seabream (Pagrus major), striped breakperch (Oplegnathus fasciatus) and black rockfish(Sebastes schlegeli), and total amount of cultured fish of the Site A were 23.1MT. The amount of husbandry fish by unit area(and volume) of the fish cage was $43.0kg\;m^{-2}(6.1kg\;m^{-3})$. The daily mean amounts of food fed by unit biomass and cage area were $30.8g\;kg^{-1}day^{-1},\;1.32kg\;m^{-2}day^{-1},$ respectively, at the Site A. The concentration of ORP of the sediment below the center at the Site A was -334.6 mV and the concentrations of AVS, COD, Carbon and Nitrogen were $0.43mg\;g^{-1}dry,\;17.75mg\;g^{-1}dry,\;10.19mg\;g^{-1}dry\;and\;3.49mg\;g^{-1}dry$, respectively. Capitella capitata was dominant benthic species which occupied $57.8\%$ of total species, and the Infaunal Trophical Index(ITI) was marked below 20 within 20 m distance from the edge of the Site A. The result of trap experiment, the solid deposition from the Site A was $34,485g\;m^{-2}yr^{-1}$ at 0 m from the center of the cage and $18,915g\;m^{-2}yr^{-1}$ at 42 m. From a model simulation, it was estimated that using a model simulation, the proportion of unfed food was $40\%$ at the Site A and the annual total amount of solid deposition was 63,401 accounting for $24.4\%$ of the annual total food fed at the Site A. The area solid deposition settled was estimated to be $8,450m^2$, which was about 16 times of the total area of fish cage at the Site A. And concerning ITI and abundance of benthos, the model predicted that sustainable solid flux at the Site A was below $10,000gm^{-2}yr^{-1}$. The percentage of food wasted was main element of solid deposition at the marine cage fish farms, and for minimizing solid deposition it is necessary to increase the efficiency of the food uptake. Based on the result of the model simulation, if the percentage of food wasted decreases to $10\%$ from the current $40\%$, then the solid deposition could decrease to a half. In addition, it was predicted that if farmers use EP pellets as food fed instead of MP and fish trash, solid deposition could decrease by $57\%$. Also this study proposes that the cage facility ratio of the licensed area be decreased to less than $5\%$ to minimize the sediment pollution.

Bathymetric changes off the sea south of Jinwoo-do Island in the Nakdong River estuary (낙동강 하구역 진우도 남측 해역의 해저지형 변화)

  • Park, Bong-woon;Kim, Sung-bo;Kim, Jae-joong;Kim, Ki-cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • Bathymetric changes were studied in the southern sea off the Jinwoo-do Island, which is one of the deltaic barrier islands surrounding the Nakddong river estuary. In this study, 16 bathymetry data sets were obtained from June 2006 to April 2015. Two narrow channels, the one lying between Jinwoo-do and Shinja-do, and the other one lying between Nulcha-do and Jinwoo-do extended into the eastern and western parts of the study area, respectively. The eastern extension of the channel contained a passage of mixed estuarine waters of seawater and river water discharged from the Nakdong river barrier and the west Nakdong River. The western channel connected the Nakdong River estuary with the Busan New Port via a connecting pier. Total volumetric changes of sediments in study area and discharge flow of the Nakdong river barrier were analyzed. Bottom topographical changes occurred mainly in the eastern extension of the channel. These changes were initially characterized by gradual erosion or deposition followed by rapid restoration. The total volume of sediment gradually increased from June 2006 to March 2013, but experienced a sudden decrease in October 2013 because of typhoon Danas. Few fluctuations were observed from October 2013 to April 2015. Analysis of the cross-sectional bathymetry of the north-south direction showed that the deepest point of the eastern channel moved 100-130 m westward and 200 m northward between June 2006 and April 2015.

Characteristics of accretion and scour around artificial reefs in the southern waters of Korea (한국 남해안에 시설된 인공어초 주위의 퇴적과 세굴 특성)

  • Kim, Chang-Gil;Suh, Sung-Ho;Oh, Tae-Gun;Kim, Byung-Gyun;Choi, Yong-Suk;Sheehy, Daniel J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.233-233
    • /
    • 2011
  • This study describes the characteristics of accretion and scour around artificial reefs in Korea. The survey for accretion and scour was made at a dice reef set consisting of 137 dice reefs. The volume of a dice reef unit is 8 $m^3$. The reef set was placed on the muddy sand at 21.6 m in November of 1999. Equipment used in the survey includes Side Scan Sonar, Multi Beam Echo Sounder, Sub-Bottom Profiler and water current meter. According to the results, the artificial reefs are heaped up at two to three times (4 m) the height of the dice reef. The maximum current around the artificial reefs was 81.5 cm/sec at the ebb tide and 72.7 cm/sec at the flood tide. Scour around artificial reefs occurs upstream to the flow while accretion is formed at wake zone in the downstream. The height of accretion ranges from 2.4 to 3.0 m. The crest of the accretion is formed at the distance of about 10 m from the edge of the reef. The slope of accretion is formed steeply at the vicinity of the reef which is at right angles to the direction of main current, and grows gently lower with the increased distance from the reef. Scour is continuously caused by upwelling from the reef set and by side currents that flow parallel to side of the accretion. Also, scour takes place on the deposited sediment rather than on the remaining bottom sediments. This means that, once fully formed, the depth of scour gully on both sides to the direction of main current hardly changes.

  • PDF

Run-out Modeling of Debris Flows in Mt. Umyeon using FLO-2D (FLO-2D 모형을 이용한 우면산 토석류 유동 수치모의)

  • Kim, Seungeun;Paik, Joongcheol;Kim, Kyung Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.965-974
    • /
    • 2013
  • Multiple debris flows occurred on July 27, 2012 in Mt. Umyeon, which resulted in 16 casualties and severe property demage. Accurate reproducing of the propagation and deposition of debris flow is essential for mitigating these disasters. Through applying FLO-2D model to these debris flows and comparing the results with field observations, we seek to evaluate the performance of the model and to analyse the rheological model parameters. Representative yield stress and dynamic viscosity back-calculated for the debris flows in the northern side of Mt. Umyeon are 1022 Pa and 652 $Pa{\cdot}s$, respectively. Numerical results obtained using these parameters reveal that deposition areas of debris flows in Raemian and Shindong-A regions are well reproduced in 63-85% agreement with the field observations. However, the propagation velocities of the flows are significantly underestimated, which is attributable to the inherent limitations of the model that can't take the entrainment of bed material and surface water into account. The debris flow deposition computed in Hyeongchon region where the entrainment is not significant appears to be in very good agreement with the field observation. The sensitivity study of the numerical results on model parameters shows that both sediment volume concentration and roughness coefficient significantly affect the flow thickness and velocity, which underscores the importance of careful selection of these model parameters in FLO-2D modeling.