• Title/Summary/Keyword: Sediment Trap

Search Result 61, Processing Time 0.027 seconds

Do Planktonic Foraminifera Juveniles Bias the Paleoceanographic/Paleoclimatic History Interpretation\ulcorner : Short Report of Year-long Trap Result (부유성 유공충의 유생은 고해양/고기후의 연구에 영향을 미치는가\ulcorner : 1년간의 퇴적물트랩 관찰로부터)

  • Im Chul Shin;Byong-Kwon Park;Hi-Il Yi
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.91-98
    • /
    • 1999
  • The effect of the relative abundances of planktonic foraminifera juveniles on the climatic and oceanographic history interpretations is documented for the first time (as far as we know) by use of the year-long time-series sediment trap samples. Statistical correlation analysis suggests that many climatic and oceanographic variables such as sinking flux (total number) of planktonic foraminifera, relative abundance of some climatic indicator species G. bulloides and N. dutertrei, temperature, and salinity do not show any significant correlations with the relative abundance of planktonic foraminifera juveniles. However, planktonic foraminifera juveniles show moderate correlations with species diversity indices (species richness, Shannon-Wiener index, and Equitability). These indicate that the juveniles do not affect the relative abundances(%) of species compositions but affect the species diversity indices. Based on this one-year trap result, special care is required when we use species diversity indices for the interpretations of paleoceanography when the juveniles are excluded from total planktonic foraminiferal countings.

  • PDF

Estimation of Silting Load and Capacity Loss Rate of Irrigation Reservoirs (관개용(灌漑用) 저수지(貯水池)의 연평균퇴사량(年平均堆砂量)과 저수용량(貯水容量) 감소율(減少率)의 산정(算定))

  • Yoon, Yong Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.69-76
    • /
    • 1981
  • The predictive equations for reservoir sedimentation rate now in use are extensively reviewed, and the equation of multiple regression type, in which the reservoir sedimentation rate is related with the watershed area and the trap-efficiency, is proposed based on the 113 irrigation reservoir resurvey data. The predictive relation so obtained proved to be a reasonable measure for the estimation of reservoir sedimentation rate. The relationship of sediment yield with the watershed area and with the reservoir trap efficiency is also analyzed. The variations of sedimentation rate and of the annual reservoir capacity loss rate was shown to heavily depend on the trap-efficiency of a reservoir. Besides, the effect of sedimentation on stream channels is confirmed and quantified based on the predictive equation derived in the present study.

  • PDF

Water Flow Distribution and Sedimentation Characteristics of Particle Materials in the Sihwa Constructed Wetland (시화호 인공습지의 물흐름 분포 및 입자성물질 퇴적 특성)

  • Choi, Dong-Ho;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kim, Dong-Sup;Joh, Seong-Ju;Park, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.425-437
    • /
    • 2007
  • Flow distribution of water and sedimentation rate were investigated to understand the hydrodynamics and settling characteristics of particulate materials in a constructed wetland for treatment of non-point sources pollutants, the Sihwa constructed wetland, Korea. The Sihwa constructed wetland is divided into three sub-wetlands(the Banwol, the Donghwa and the Samhwa wetlands) to treat the polluted water from three streams, the Banwol stream, the Donghwa stream and the Samhwa stream. From the results of water flow experiment using dye(Rhodamine 50WT Red), it was found that the water flow in the wetland was prevailing at the waterway and open water. Dye was spread slowly in the closed water area planted by plants. The mean hydraulic retention time(HRT) at the upper area of high wetland and lower wetland of Banwol, was found to be 34.1 hr at the upper area and 74.6 hr at the lower area respectively, totaling approximately 108.7 hr(4.5 days). The sedimentation rate was higher at lower area(sites of B, C and D) of the wetland than upper area(site of A which is settling zone). Based on the forecast for 20 years as to the amount of sediment that can be deposited in the open water in the future, the sediment depth of each area would be like this: A: 6.3 cm, B: 8.3 cm, C: 7.0 cm, D: 9.5 cm. The contents of organic materials in the sediment deposited within the sediment trap were found to be higher overly in the first investigation period which had much rainfall, and B, C and D areas were found to have an increased COD accumulation than A area. Also, nitrogen and phosphorus were found to increase in the down-stream of the wetland. The results of this study suggest that a sustainable research and management for the characteristics of water flow pattern and sedimentation changeable as time passes is needs to maintain or improve the efficiency of water treatment in the constructed wetland.

A Study on the Settling of Suspended Material in 4 weirs of the Nakdong River (낙동강 본류 4개보에서 부유물질 침강에 관한 연구)

  • Lee, Jaesoon;Han, Gyusung;Kwon, Bomin;Choi, Kwangsoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.488-488
    • /
    • 2018
  • 본 연구는 보 구간에서 조류와 조류 발생원인 물질의 거동해석 및 조류예측모델의 입력 자료로 활용하기 위하여 부유물질의 침강량과 침강속도를 조사하였다. 낙동강 수계 4개보(달성보, 강정고령보, 합천창녕보, 창녕함안보)를 대상으로 2017년 6월, 7월, 11월, 12월에 조사하였으며, Sediment trap을 이용하여 포집한 침강물질에 대해 seston, POC, PON, POP, Chl-a, Pheo-a의 침강량, 침강속도 및 물질의 함량비를 분석하였다. 조사기간 동안 낙동강수계 4개보 지점에서 seston, POC, PON, POP, Chl-a, Pheo-a 의 침강량은 각각 $322.7{\sim}58,011.5mg/m^2/day$, $33.8{\sim}1,127.2mg/m^2/day$, $4.2{\sim}150.6mg/m^2/day$, $0.667{\sim}10.634mg/m^2/day$, $0.3{\sim}18.7mg/m^2/day$, $0.3{\sim}14.7mg/m^2/day$의 범위로 나타났으며, seston, POC, PN, PP, Chl-a의 침강속도는 각각 0.02~1.46m/day, 0.02~1.36m/day, 0.03~3.18m/day, 0.01~1.18m/day, 0.02~0.60 m/day의 범위로 나타났다. 조사기간 동안 4개보 지점의 평균 침강속도는 seston 0.94m/day, POC 0.44m/day, PON 0.52m/day, POP 0.21m/day, Chl-a 0.22m/day로 보 건설 전인 2004년도 낙동강 본류 지점에서의 침강속도(seston 14.54 m/day, POC 18.32m/day, PON 1.64m/day, POP 5.96m/day, Chl-a 0.29m/day)에 비해 적은 것으로 나타났다. 한편 활성을 잃은 식물플랑크톤을 나타내는 Pheo-a의 농도와 살아있는 식물플랑크톤의 현존량의 지표 Chl-a의 농도 비교결과 죽거나 활성을 잃은 식물플랑크톤의 양이 평균 1.5배 많은 것으로 나타났다. 조사기간 동안 4개 보 지점의 Sediment trap 포집된 침강물 내 C:N비는 2.0~7.4 범위로, N;P비는 14.2~52.5 범위로, C/Chl-a비는 14.4~253.3의 범위로 나타났다. 일반적으로 조류의 C/Chl-a 비가 40으로 볼 때 본 연구에서 조사된 보 지점에서의 침강물은 외부로부터 유입된 유기물이 많은 것으로 판단된다. 본 연구에서는 조류의 침강속도는 조류의 종을 구분하지 않은 총 조류에 대한 것으로, 향후 보 구간에서 종 조성을 고려한 조류예측 모델을 향상시키기 위해서는 조류 종별에 대한 침강속도에 대한 연구할 필요가 있다.

  • PDF

Temporal and Spatial Variations of Sinking-particle Fluxes in the Northwestern Subtropical Pacific (북서태평양 아열대 해역에서 침강입자 플럭스의 시·공간 변동)

  • Kim, Hyung-Jeek;Hyeong, Ki-Seong;Yoo, Chan-Min;Jeon, Dong-Chull;Jeong, Jin-Hyun;Khim, Boo-Keun;Kim, Dong-Seon
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.385-395
    • /
    • 2011
  • Time-series sediment traps were deployed at 1,000 m water depth of the northwestern subtropical Pacific from July 2009 to June 2010, with the aim of understanding temporal and spatial variations of sinking-particle fluxes. The opening and closing of the traps was synchronized at 18-day periods for 20 events. Total mass fluxes showed distinct seasonal variations with high values for the summer-fall seasons and relatively low values for winter-spring. This seasonal variation at two stations was characterized by a distinct difference in $CaCO_3$ fluxes between the two seasons. The enhanced $CaCO_3$ flux in the summer - fall seasons might be attributed to an increased planktonic foraminiferal flux. Total mass flux at FM10 station was nearly 50% higher than that at FM1 station. The difference in $CaCO_3$ fluxes between two stations contributed nearly 70% of the difference of total mass fluxes. The $CaCO_3$ flux was a major component controlling temporal and spatial variation of sinking - particle fluxes in the western subtropical Pacific Ocean.

Organic Carbon Cycling in Ulleung Basin Sediments, East Sea (동해 울릉분지 퇴적물에서 유기탄소 순환)

  • Lee, Tae-Hee;Kim, Dong-Seon;Khim, Boo-Keun;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.145-156
    • /
    • 2010
  • This study investigated organic carbon fluxes in Ulleung Basin sediments, East Sea based on a chamber experiment and geochemical analyses. At depths greater than 2,000 m, Ulleung Basin sediments have high organic carbon contents (over 2.0%). Apparent sedimentation rates (ASR) calculated from excess $^{210}Pb$ activity distribution, varied from 0.036 to $0.047\;cm\;yr^{-1}$. The mass accumulation rates (MAR) calculated from porosity, grain density (GD), and ASR, ranged from 131 to $184\;g\;m^{-2}\;yr^{-1}$. These results were in agreement with sediment trap results obtained at a water depth of 2100 m. Input fluxes of organic carbon varied from 7.89 to $11.08\;gC\;m^{-2}\;yr^{-1}$ at the basin sediments, with an average of $9.56\;gC\;m^{-2}\;yr^{-1}$. Below a sediment depth of 15cm, burial fluxes of organic carbon ranged from 2.02 to $3.10\;gC\;m^{-2}\;yr^{-1}$. Within the basin sediments, regenerated fluxes of organic carbon estimated with oxygen consumption rate, varied from 6.22 to $6.90\;gC\;m^{-2}\;yr^{-1}$. However, the regenerated fluxes of organic carbon calculated by subtracting burial flux from input flux, varied from 5.87 to $7.98\;gC\;m^{-2}\;yr^{-1}$. Respectively, the proportions of the input flux, regenerated flux, and burial flux to the primary production ($233.6\;gC\;m^{-2}\;yr^{-1}$) in the Ulleung Basin were about 4.1%, 3.0%, and 1.1%. These proportions were extraordinarily higher than the average of world open ocean. Based upon these results, the Ulleung Basin might play an integral role in the deposition and removal of organic carbon.

Behaviors of Metals in the Settling Particles in the Bransfield Strait, Antarctica (남극 브랜스필드 해협에서 침강입자의 금속원소 특성)

  • Kim, Dong-Seon;Kim, Dong-Yup;Kim, Young-June;Kang, Young-Chul;Shim, Jeong-Hee
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • Sediment trap samples were collected to find out characteristic behaviors of metals in the settling particles by using time-series sediment traps at 678m and 1678m water depths in the Bransfield Strait from December 27th, 1999 to December 26th, 2000. Total mass fluxes at the intermediate water depth (678m water depth) were high in the austral summer and low in the austral winter, whereas at the deep water depth (1678m water depth) they showed high values in both the summer and winter. Total mass fluxes were generally higher in the deep water depth than in the intermediate water depth, which indicates that a substantial amount of sediments are laterally transported by strong currents into the deep basin from the shallow water depths. Aluminium contents also showed large seasonal variations with high values in the winter and low values in the summer. On the contrary, organic carbon contents were high in the summer and low in the winter. Al contents were negatively correlated with organic carbon contents, which may be ascribed that detrital particles are diluted by organic matter produced by phytoplankton in the surface waters. Metals measured in this study exhibited three characteristic behaviors; 1) a positive correlation with Al-Ti, Fe, Mn, V, Co, and Ba, 2) a negative correlation with Al-Cd and Zn, 3) no relationship with Al-Sr, Cu, Cr, Ni. Terrestrial materials may act as a major source fer metals that are positively correlated with Al, and organic matter may be a major source for metals that are negatively correlated with Al. Enrichment factor (EF) of Fe, Mn, Ba, Vi Co, Sr, Cr, and Ni ranged from 0.5 to 1.5, whereas EF of Zn, Cu, and Cd showed much higher values than 1.

Past sea surface temperature of the East Sea inferred from alkenone

  • Lee, Kyung-Eun;Kim, Kyung-Ryul
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.27-34
    • /
    • 2002
  • We measured the alkenone concentration of bulk sediments from a piston core collected from the Ulleung Basin in the East Sea in order to reconstruct past sea surface temperatures (SST). Sediment ages are well constrained by AMS $^{14}C$ dates of the planktonic foraminifera Globigerina bulloides. Coretop alkenone SST calibration with modern surface temperatures and sediment trap dat (Hong et al., 1996) indicate that the SST estimated from alkenones most likely represent the temperatures of late fall. Downcore variations in the alkenone saturation index indicate that between 19 and 15 kyr BP the surface waters were about $3^{\circ}C$ warmer than today. Between 15 and 11 kyr BP, the temperatures were about $3^{\circ}C$ lower than today. A rapid SST increase of about $3^{\circ}C$ occurred at approximately 10 kyr BP. After considering the factors which might influence the SST reconstruction from the $U^{k'}_{37}$ values, we conclude that the alkenone temperature estimates are reliable. The reason for glacial warming in the East Sea is not clear, although there is a possibility that it could be caused by shift in the season of maximum alkenone production from summer during the last glaciation to late fall during the Holocene. Cooling between 15 and 11 kyr BP may be due to inflow of cold water into the East Sea such as via the Oyashio Current or ice-melt water. Warming at the early Holocene could be due to inflow of the Tsushima Current into the East Sea through the Korea Strait.

Chemical Fluxes at the Sediment-Water Interface Below Marine Fish Cages on the Coastal Waters off Tong-Young, South Coast of Korea (남해안 통영지역 가두리양식장 해수-퇴적물 경계면에서의 chemical fluxes)

  • Shim, Jeong-Hee;Kang, Young-Chul;Choi, Jin-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.151-159
    • /
    • 1997
  • Benthic respiration and chemical fluxes were measured at the sediment-water interface underlying the marine fish cages floating on the open coastal waters off Tong-Young, the South Coast of Korea. The effects of cage farming on coastal benthic environment and on mass balance of organic carbon in the benthic boundary layer under the marine fish cages are addressed. In a growing season of caged fishes of June, 1995, benthic chambers and sediment traps were deployed on the sediment-water interfaces of the two sites chosen for this study: 1) Cage Site, directly underlying the fish cages of the farm at 18 m water depth, and 2) Control Site, about 100 m away from the farm at 32 m water depth. Benthic respiration rates and chemical fluxes were calculated from the evolution of dissolved oxygen and chemicals in the chamber water, and mass balance of organic carbon in the benthic boundary layer was constructed based on the vertical flux of particulate organic matter (POM) and chemical fluxes out of the sediment. High organic dumping (6400 mg C $m^{-2}d^{-1}$) and high benthic respiration (230 mmol $O_2\;m^{-2}d^{-1}$) were observed at the Cage Site. Equivalent to 40% of vertical flux of organic carbon into the Cage Site seemed to be decomposed concurrently and released back to overlying waters (2400 mg C $m^{-2}d^{-1}$). Consequently, up to 4000 mg C $m^{-2}d^{-1}$ of organic carbon could be buried into the farm sediment (equivalent to 60% of organic carbon flux into the Cage Site). At the Control Site, relatively less input of organic carbon (4000 mg C $m^{-2}d^{-1}$) and low benthic respiration rate (75 mmol $O_2\;m^{-2}d^{-1}$) were observed despite short distance away from the cages. The influence of cage farming on benthic chemical fluxes might be restricted and concentrated in the sea bottom just below the fish cages in spite of massive organic dumping and high current regime around the fish cage farm.

  • PDF

Environmental Management of Marine Cage Fish Farms using Numerical Modelling (수치모델을 이용한 해상어류가두리양식장의 환경관리 방안)

  • Kwon, Jung-No;Jung, Rae-Hong;Kang, Yang-Soon;An, Kyoung-Ho;Lee, Won-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.4
    • /
    • pp.181-195
    • /
    • 2005
  • To study the effects of aquaculture activity of marine cage fish farms on marine environment, field researches including hydrography, sediment, benthos and trap experiment at the marine cage fish farms(Site A) around estuaries of Tongyeong city were carried out during June $26\~27$, 2003. A simulation using numerical model-DEPOMOD was conducted to predict the solid deposition from fish cage and to assess the probable solid deposition, and the efficiency of environmental management of marine cage fish farms was studied. The marine cage fish farms cultured mainly common sea bass (Lateolabrax japonicus), red seabream (Pagrus major), striped breakperch (Oplegnathus fasciatus) and black rockfish(Sebastes schlegeli), and total amount of cultured fish of the Site A were 23.1MT. The amount of husbandry fish by unit area(and volume) of the fish cage was $43.0kg\;m^{-2}(6.1kg\;m^{-3})$. The daily mean amounts of food fed by unit biomass and cage area were $30.8g\;kg^{-1}day^{-1},\;1.32kg\;m^{-2}day^{-1},$ respectively, at the Site A. The concentration of ORP of the sediment below the center at the Site A was -334.6 mV and the concentrations of AVS, COD, Carbon and Nitrogen were $0.43mg\;g^{-1}dry,\;17.75mg\;g^{-1}dry,\;10.19mg\;g^{-1}dry\;and\;3.49mg\;g^{-1}dry$, respectively. Capitella capitata was dominant benthic species which occupied $57.8\%$ of total species, and the Infaunal Trophical Index(ITI) was marked below 20 within 20 m distance from the edge of the Site A. The result of trap experiment, the solid deposition from the Site A was $34,485g\;m^{-2}yr^{-1}$ at 0 m from the center of the cage and $18,915g\;m^{-2}yr^{-1}$ at 42 m. From a model simulation, it was estimated that using a model simulation, the proportion of unfed food was $40\%$ at the Site A and the annual total amount of solid deposition was 63,401 accounting for $24.4\%$ of the annual total food fed at the Site A. The area solid deposition settled was estimated to be $8,450m^2$, which was about 16 times of the total area of fish cage at the Site A. And concerning ITI and abundance of benthos, the model predicted that sustainable solid flux at the Site A was below $10,000gm^{-2}yr^{-1}$. The percentage of food wasted was main element of solid deposition at the marine cage fish farms, and for minimizing solid deposition it is necessary to increase the efficiency of the food uptake. Based on the result of the model simulation, if the percentage of food wasted decreases to $10\%$ from the current $40\%$, then the solid deposition could decrease to a half. In addition, it was predicted that if farmers use EP pellets as food fed instead of MP and fish trash, solid deposition could decrease by $57\%$. Also this study proposes that the cage facility ratio of the licensed area be decreased to less than $5\%$ to minimize the sediment pollution.