• Title/Summary/Keyword: Security element

Search Result 372, Processing Time 0.028 seconds

An Analysis on the Error Probability of A Bloom Filter (블룸필터의 오류 확률에 대한 분석)

  • Kim, SungYong;Kim, JiHong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.809-815
    • /
    • 2014
  • As the size of the data is getting larger and larger due to improvement of the telecommunication techniques, it would be main issues to develop and process the database. The bloom filter used to lookup a particular element under the given set is very useful structure because of the space efficiency. In this paper, we introduce the error probabilities in Bloom filter. Especially, we derive the revised false positive rates of the Bloom filter using experimental method. Finally we analyze and compare the original false positive probability of the bloom filter used until now and the false decision probability proposed in this paper.

Development of Automated Optimum Design Program Considering the Design Details (세부설계사항을 고려한 자동최적설계 프로그램 개발)

  • Chang, Chun Ho
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The primary objective of this paper is to develop optimal algorithms of reinforced concrete frame structural systems by the limit state design(CP 1110) and to look into the possibility of detailed design of these structural systems. The structural formulation is derived on the finite element method. The objective of optimization of a reinforced structure for a specified geometry is mainly to determine the optimum cross-sectional dimensions of concrete and the area of the various sizes of the reinforcement required for each member. In addition to the detail s such as the amount of web reinforcement, cutoff points of longitudinal reinforcedments etc. are also considered as design variables. In this study, the method of "Generalized Reduced Gradient, Rounding and with Neighborhood search" and "the Sequential Linear Programming" are employed as an analytical method of nonlinear optimization.

  • PDF

A study of SSO design based SAML for public library clustering (공공도서관 클러스터링을 위해 SAML 기반의 사용자통합인증 설계에 관한 연구)

  • Byeon, Hoi Kyun;Ko, Il Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.3
    • /
    • pp.55-67
    • /
    • 2008
  • The user has to subscribe to the library so that user use the library service. User has to register at that in order to use of the nearby another library. Moreover, service such as the inter-library loan and returning my loan book to other library in which the mutual cooperation between the library is needed necessity. But it services due to the constraint condition because of the administrative or technical problems. In this paper excludes the administrative element. The web service model is forming the cluster based on the mutual cooperation between the technologically adjacent public library and provides the technologically necessary single sign-on (SSO) in order to support the additional service. The single sign-on of the library which is concluded by this model using the security information exchange standard (Security Assertion Markup Language : SAML), it is processed by XML base. In using this model, the loan information is confirmed in the attribution in return service library and the model can utilize for the return of loan book in other library. It designs the single sign-on about it.

Conceptual Data Modeling: Entity-Relationship Models as Thinging Machines

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.247-260
    • /
    • 2021
  • Data modeling is a process of developing a model to design and develop a data system that supports an organization's various business processes. A conceptual data model represents a technology-independent specification of structure of data to be stored within a database. The model aims to provide richer expressiveness and incorporate a set of semantics to (a) support the design, control, and integrity parts of the data stored in data management structures and (b) coordinate the viewing of connections and ideas on a database. The described structure of the data is often represented in an entity–relationship (ER) model, which was one of the first data-modeling techniques and is likely to continue to be a popular way of characterizing entity classes, attributes, and relationships. This paper attempts to examine the basic ER modeling notions in order to analyze the concepts to which they refer as well as ways to represent them. In such a mission, we apply a new modeling methodology (thinging machine; TM) to ER in terms of its fundamental building constructs, representation entities, relationships, and attributes. The goal of this venture is to further the understanding of data models and enrich their semantics. Three specific contributions to modeling in this context are incorporated: (a) using the TM model's five generic actions to inject processing in the ER structure; (b) relating the single ontological element of TM modeling (i.e., a thing/machine or thimac) to ER entities and relationships; and (c) proposing a high-level integrated, extended ER model that includes structural and time-oriented notions (e.g., events or behavior).

A new decomposition algorithm of integer for fast scalar multiplication on certain elliptic curves (타원곡선상의 고속 곱셈연산을 위한 새로운 분해 알고리즘)

  • 박영호;김용호;임종인;김창한;김용태
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.6
    • /
    • pp.105-113
    • /
    • 2001
  • Recently, Gallant, Lambert arid Vanstone introduced a method for speeding up the scalar multiplication on a family of elliptic curves over prime fields that have efficiently-computable endomorphisms. It really depends on decomposing an integral scalar in terms of an integer eigenvalue of the characteristic polynomial of such an endomorphism. In this paper, by using an element in the endomorphism ring of such an elliptic curve, we present an alternate method for decomposing a scalar. The proposed algorithm is more efficient than that of Gallant\`s and an upper bound on the lengths of the components is explicitly given.

An Efficient Hardware Implementation of AES Rijndael Block Cipher Algorithm (AES Rijndael 블록 암호 알고리듬의 효율적인 하드웨어 구현)

  • 안하기;신경욱
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.53-64
    • /
    • 2002
  • This paper describes a design of cryptographic processor that implements the AES (Advanced Encryption Standard) block cipher algorithm, "Rijndael". An iterative looping architecture using a single round block is adopted to minimize the hardware required. To achieve high throughput rate, a sub-pipeline stage is added by dividing the round function into two blocks, resulting that the second half of current round function and the first half of next round function are being simultaneously operated. The round block is implemented using 32-bit data path, so each sub-pipeline stage is executed for four clock cycles. The S-box, which is the dominant element of the round block in terms of required hardware resources, is designed using arithmetic circuit computing multiplicative inverse in GF($2^8$) rather than look-up table method, so that encryption and decryption can share the S-boxes. The round keys are generated by on-the-fly key scheduler. The crypto-processor designed in Verilog-HDL and synthesized using 0.25-$\mu\textrm{m}$ CMOS cell library consists of about 23,000 gates. Simulation results show that the critical path delay is about 8-ns and it can operate up to 120-MHz clock Sequency at 2.5-V supply. The designed core was verified using Xilinx FPGA board and test system.

A fast scalar multiplication on elliptic curves (타원곡선에서 스칼라 곱의 고속연산)

  • 박영호;한동국;오상호;이상진;임종인;주학수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.3-10
    • /
    • 2002
  • For efficient implementation of scalar multiplication in Kobliz elliptic curves, Frobenius endomorphism is useful. Instead of binary expansion of scalar, using Frobenius expansion of scalar we can speed up scalar multiplication and so fast scalar multiplication is closely related to the expansion length of integral multipliers. In this paper we propose a new idea to reduce the length of Frobenius expansion of integral multipliers of scalar multiplication, which makes speed up scalar multiplication. By using the element whose norm is equal to a prime instead of that whose norm is equal to the order of a given elliptic curve we optimize the length of the Frobenius expansion. It can reduce more the length of the Frobenius expansion than that of Solinas, Smart.

Theoretical Validation of Inheritance Metric in QMOOD against Weyuker's Properties

  • Alharthi, Mariam;Aljedaibi, Wajdi
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.284-296
    • /
    • 2021
  • Quality Models are important element of the software industry to develop and implement the best quality product in the market. This type of model provides aid in describing quality measures, which directly enhance the user satisfaction and software quality. In software development, the inheritance technique is an important mechanism used in object-oriented programming that allows the developers to define new classes having all the properties of super class. This technique supports the hierarchy design for classes and makes an "is-a" association among the super and subclasses. This paper describes a standard procedure for validating the inheritance metric in Quality Model for Object-Oriented Design (QMOOD) by using a set of nine properties established by Weyuker. These properties commonly using for investigating the effectiveness of the metric. The integration of two measuring methods (i.e. QMOOD and Weyuker) will provide new way for evaluating the software quality based on the inheritance context. The output of this research shows the extent of satisfaction of the inheritance metric in QMOOD against Weyuker nine properties. Further results proved that Weyker's property number nine could not fulfilled by any inheritance metrics. This research introduces a way for measuring software that developed using object-oriented approach. The theoretical validation of the inheritance metric presented in this paper is a small step taken towards producing quality software and in providing assistance to the software industry.

Information & Analytical Support of Innovation Processes Management Efficience Estimations at the Regional Level

  • Omelyanenko, Vitaliy;Pidorycheva, Iryna;Voronenko, Viacheslav;Andrusiak, Nataliia;Omelianenko, Olena;Fyliuk, Halyna;Matkovskyi, Petro;Kosmidailo, Inna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.400-407
    • /
    • 2022
  • Innovations significantly affect the efficiency of the socioeconomic systems of the regions, acting as a system-forming element of their development. Modern models of economic development also consider innovation activity, intellectual potential, knowledge as the basic factors for stimulating the economic growth of the region. The purpose of the study is to develop methodological foundations for evaluating the effectiveness of a regional innovation system based on a multidimensional analysis of its effects. To further study the effectiveness of RIS, we have used one of the methods of multidimensional statistical analysis - canonical analysis. The next approach allows adding another important requirement to the methodological provision of evaluation of the level of innovation development of industries and regions, namely - the time factor, the formalization of which is realized in autoregressive dynamic economic and mathematical models and can be used in our research. Multidimensional Statistical Analysis for RIS effectiveness estimation was used to model RIS by typological regression. Based on it, multiple regression models were built in groups of regions with low and relatively high innovation potential. To solve the methodological problem of RIS research, we can also use the approach to the system as a "box" with inputs and outputs.

Consciousness, Cognition and Neural Networks in the Brain: Advances and Perspectives in Neuroscience

  • Muhammad Saleem;Muhammad Hamid
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.47-54
    • /
    • 2023
  • This article reviews recent advances and perspectives in neuroscience related to consciousness, cognition, and neural networks in the brain. The neural mechanisms underlying cognitive processes, such as perception, attention, memory, and decision-making, are explored. The article also examines how these processes give rise to our experience of consciousness. The implications of these findings for our understanding of the brain and its functions are presented, as well as potential applications of this knowledge in fields such as medicine, psychology, and artificial intelligence. Additionally, the article explores the concept of a quantum viewpoint concerning consciousness, cognition, and creativity and how incorporating DNA as a key element could reconcile classical and quantum perspectives on human behaviour, consciousness, and cognition, as explained by genomic psychological theory. Furthermore, the article explains how the human brain processes external stimuli through the sensory nervous system and how it can be simulated using an artificial neural network (ANN) consisting of one input layer, multiple hidden layers, and an output layer. The law of learning is also discussed, explaining how ANNs work and how the modification of weight values affects the output and input values. The article concludes with a discussion of future research directions in this field, highlighting the potential for further discoveries and advancements in our understanding of the brain and its functions.