• Title/Summary/Keyword: Security element

Search Result 372, Processing Time 0.033 seconds

Analysis on Media Reports of the 「Security Services Industry Act」 Using News Big Data -Focusing on the Period from 1990 to 2021-

  • Cho, Cheol-Kyu;Park, Su-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.199-204
    • /
    • 2022
  • The purpose of this study is to broaden the understanding of the Security Services Industry Act, and also to examine the meanings of various phenomena by analyzing the media report big data rather than the researchers' perspective on the Security Services Industry Act. In the research method, this study searched for a keyword 「Security Services Industry Act」 that prescribes the security work as an important subject of crime prevention and maintenance of public order in Korea. The data was searched from 1990 to 2021 the BIG KINDS could provide. Also, for the concrete analysis during the period of data search, it was divided into settlement period(1976~2001), growth period-quantitative(2002~2012), and growth period-qualitative(2013~2021). In the results of this study, the media report perception of the Security Services Industry Act is continuously emphasizing the social roles and importance of private security according to the flow of time. The consequent marketability of private security will play great roles in the protection of people's lives and properties in the combination with various other industries in the future. However, the private security industry that provides public peace service together with the police, could be rising as an element that hinders the development of private security industry because of various social issues caused by legal regulations and illegal problems, so it would be necessary to more strengthen its responsibility and roles accordingly.

Data Storage and Security Model for Mobile Healthcare Service based on IoT (IoT 기반의 모바일 헬스케어 서비스를 위한 데이터 저장 및 보호 모델)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.187-193
    • /
    • 2017
  • Objects Internet-based healthcare services provide healthcare and healthcare services, including measurement of user's vital signs, diagnosis and prevention of diseases, through a variety of object internet devices. However, there is a problem that new security vulnerability can occur when inter-working with the security weakness of each element technology because the internet service based on the object Internet provides a service by integrating various element technologies. In this paper, we propose a user privacy protection model that can securely process user's healthcare information from a third party when delivering healthcare information of users using wearable equipment based on IoT in a mobile environment to a server. The proposed model provides attribute values for each healthcare sensor information so that the user can safely handle, store, and store the healthcare information, thereby managing the privacy of the user in a hierarchical manner. As a result of the performance evaluation, the throughput of IoT device is improved by 10.5% on average and the server overhead is 9.9% lower than that of the existing model.

A Study on Estimation of the Collapse Pattern of Road Sink Using Distinct Element Method (개별요소법을 이용한 도로함몰 붕괴양상 추정에 관한 연구)

  • Ham, Myoung Soo;Park, Seon Woo;Lee, Hyun Dong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2019
  • The road sinks in the sewer line or subway section are affected by the ground characteristics. Therefore, it is necessary to accurately identify the relationship between the soil properties and the ground motion in the area where cavities occurred in order to establish a countermeasure against the road sink. In this paper, simulation was performed by using EDEM program, which is one of the Discrete Element Method programs, for sandy soil and clayey soil, which are most common in alluvial deposits, with different locations and sizes of cavities in the underground. As a result, it was found that the sink size occurred more in the sandy soil than in the cohesive soil. Deeper and larger cavity is more likely to occur the road sink In the sand soil model while road sink in the clay model is easy to occur when the cavity is more shallower.

A Study on Operational Element Identification and Integrated Time Series Analysis for Cyber Battlefield Recognition (사이버 전장인식을 위한 작전상태 요소 식별 및 통합 시계열 분석 연구)

  • Son-yong Kim;Koo-hyung Kwon;Hyun-jin Lee;Jae-yeon Lee;Jang-hyuk Kauh;Haeng-rok Oh
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.65-73
    • /
    • 2022
  • Since cyber operations are performed in a virtual cyber battlefield, the measurement indicators that can evaluate and visualize the current state of the cyber environment in a consistent form are required for the commander to effectively support the decision-making of cyber operations. In this paper, we propose a method to define various evaluation indicators that can be collected on the cyber battlefield, normalized them, and evaluate the cyber status in a consistent form. The proposed cyber battlefield status element consists of cyber asset-related indicators, target network-related indicators, and cyber threat-related indicators. Each indicator has 6 sub-indicators and can be used by assigning weights according to the commander's interests. The overall status of the cyber battlefield can be easily recognized because the measured indicators are visualized in time series on a single screen. Therefore, the proposed method can be used for the situational awareness required to effectively conduct cyber warfare.

The Secure Key Store to prevent leakage accident of a Private Key and a Certificate (인증서와 개인키 유출 방지를 위한 보안키 저장소 Secure Key Store)

  • Park, Young-Jin;Kim, Seon-Jong;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • In Korea, the Public Key Infrastructure (PKI) has been introduced. For secure information transmission and identification, the electronic signature authorization system of a certificate-based is built, and then the service provide.The certificate is stored in location what users can easily access and copy. Thus, there is a risk that can be stolen by malware or web account hacking. In addition, private key passwords can be exposed by the logging tool, after keyboard security features are disabled. Each of these security weaknesses is a potential conduit for identity theft, property/asset theft, and theft of the actual certificates. The present study proposes a method to prevent the private key file access illegally. When a certificate is stored, the private key is encrypted by the dependent element of the device, and it is stored securely. If private key leakage occurs, the retrieved key could not be used on other devices.

A Study on Definitions of Security Requirements for Identification and Authentication on the Step of Analysis (분석단계 보안에서 식별 및 인증의 보안 요건 정의에 대한 연구)

  • Shin, Seong-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.87-93
    • /
    • 2014
  • TIn analysis as the first step of S/W development, security requirements of identification and authentication, ID and password management, authentication process, authentication method, ete. should be defined. Identification is to uniquely identify certain users and applications running on a certain system. Authentication means the function to determine true or false users and applications in some cases. This paper is to suggest the security requirements for identification and authentication in analysis step. Firstly, individual ID should be uniquely identified. The second element is to apply the length limitations, combination and periodic changes of passwords. The third should require the more reinforced authentication methods besides ID and passwords and satisfy the defined security elements on authentication process. In this paper, the security requirements for the step of identification and authentication have been explained through several practical implementation methods.

Q-Learning Based Method to Secure Mobile Agents and Choose the Safest Path in a IoT Environment

  • Badr Eddine Sabir;Mohamed Youssfi;Omar Bouattane;Hakim Allali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.71-80
    • /
    • 2024
  • The Internet of Things (IoT) is an emerging element that is becoming increasingly indispensable to the Internet and shaping our current understanding of the future of the Internet. IoT continues to extend deeper into the daily lives of people, offering distributed and critical services. In contrast with current Internet, IoT depends on a dynamic architecture where physical objects with embedded sensors will communicate via cloud to send and analyze data [1-3]. Its security troubles will surely impinge all aspects of civilization. Mobile agents are widely used in the context of the IoT and due to the possibility of transmitting their execution status from one device to another in an IoT network, they offer many advantages such as reducing network load, encapsulating protocols, exceeding network latency, etc. Also, cryptographic technologies, like PKI and Blockchain technology, and Artificial Intelligence are growing rapidly allowing the addition of an approved security layer in many areas. Security issues related to mobile agent migration can be resolved with the use of these technologies, thus allowing increased reliability and credibility and ensure information collecting, sharing, and processing in IoT environments, while ensuring maximum autonomy by relying on the AI to allow the agent to choose the most secure and optimal path between the nodes of an IoT environment. This paper aims to present a new model to secure mobile agents in the context of the Internet of Things based on Public Key Infrastructure (PKI), Ethereum Blockchain Technology and Q-learning. The proposed model provides a secure migration of mobile agents to ensure security and protect the IoT application against malevolent nodes that could infiltrate these IoT systems.

Application of steel equivalent constitutive model for predicting seismic behavior of steel frame

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1055-1075
    • /
    • 2015
  • In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

Comparative Analysis of ViSCa Platform-based Mobile Payment Service with other Cases (스마트카드 가상화(ViSCa) 플랫폼 기반 모바일 결제 서비스 제안 및 타 사례와의 비교분석)

  • Lee, June-Yeop;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.163-178
    • /
    • 2014
  • Following research proposes "Virtualization of Smart Cards (ViSCa)" which is a security system that aims to provide a multi-device platform for the deployment of services that require a strong security protocol, both for the access & authentication and execution of its applications and focuses on analyzing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service by comparing with other similar cases. At the present day, the appearance of new ICT, the diffusion of new user devices (such as smartphones, tablet PC, and so on) and the growth of internet penetration rate are creating many world-shaking services yet in the most of these applications' private information has to be shared, which means that security breaches and illegal access to that information are real threats that have to be solved. Also mobile payment service is, one of the innovative services, has same issues which are real threats for users because mobile payment service sometimes requires user identification, an authentication procedure and confidential data sharing. Thus, an extra layer of security is needed in their communication and execution protocols. The Virtualization of Smart Cards (ViSCa), concept is a holistic approach and centralized management for a security system that pursues to provide a ubiquitous multi-device platform for the arrangement of mobile payment services that demand a powerful security protocol, both for the access & authentication and execution of its applications. In this sense, Virtualization of Smart Cards (ViSCa) offers full interoperability and full access from any user device without any loss of security. The concept prevents possible attacks by third parties, guaranteeing the confidentiality of personal data, bank accounts or private financial information. The Virtualization of Smart Cards (ViSCa) concept is split in two different phases: the execution of the user authentication protocol on the user device and the cloud architecture that executes the secure application. Thus, the secure service access is guaranteed at anytime, anywhere and through any device supporting previously required security mechanisms. The security level is improved by using virtualization technology in the cloud. This virtualization technology is used terminal virtualization to virtualize smart card hardware and thrive to manage virtualized smart cards as a whole, through mobile cloud technology in Virtualization of Smart Cards (ViSCa) platform-based mobile payment service. This entire process is referred to as Smart Card as a Service (SCaaS). Virtualization of Smart Cards (ViSCa) platform-based mobile payment service virtualizes smart card, which is used as payment mean, and loads it in to the mobile cloud. Authentication takes place through application and helps log on to mobile cloud and chooses one of virtualized smart card as a payment method. To decide the scope of the research, which is comparing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service with other similar cases, we categorized the prior researches' mobile payment service groups into distinct feature and service type. Both groups store credit card's data in the mobile device and settle the payment process at the offline market. By the location where the electronic financial transaction information (data) is stored, the groups can be categorized into two main service types. First is "App Method" which loads the data in the server connected to the application. Second "Mobile Card Method" stores its data in the Integrated Circuit (IC) chip, which holds financial transaction data, which is inbuilt in the mobile device secure element (SE). Through prior researches on accept factors of mobile payment service and its market environment, we came up with six key factors of comparative analysis which are economic, generality, security, convenience(ease of use), applicability and efficiency. Within the chosen group, we compared and analyzed the selected cases and Virtualization of Smart Cards (ViSCa) platform-based mobile payment service.

CONSTANT-ROUND PRIVACY PRESERVING MULTISET UNION

  • Hong, Jeongdae;Kim, Jung Woo;Kim, Jihye;Park, Kunsoo;Cheon, Jung Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1799-1816
    • /
    • 2013
  • Privacy preserving multiset union (PPMU) protocol allows a set of parties, each with a multiset, to collaboratively compute a multiset union secretly, meaning that any information other than union is not revealed. We propose efficient PPMU protocols, using multiplicative homomorphic cryptosystem. The novelty of our protocol is to directly encrypt a polynomial by representing it by an element of an extension field. The resulting protocols consist of constant rounds and improve communication cost. We also prove the security of our protocol against malicious adversaries, in the random oracle model.