• Title/Summary/Keyword: Security Techniques

Search Result 1,571, Processing Time 0.028 seconds

Physical Layer Security of AF Relay Systems With Jamming.

  • Ofori-Amanfo, Kwadwo Boateng;Lee, Kyoung-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.288-289
    • /
    • 2019
  • This paper studies the secrecy capacity for a wireless cooperative network with perfect channel state information at the relays, and receiver. A similar assumption is also made for the instance where there exist a direct link between the transmitter and receiver. Physical Layer security techniques are employed in wireless networks to mitigate against the activity of eavesdroppers. It offers a viable alternative to computationally intensive encryption. In this paper the design of a protocol utilizing jamming (via jamming nodes) for better security and relaying (via relay nodes) for the amplify-and-forward (AF) operation, is investigated. A a signal-to-noise variant of secrecy known as secrecy gap is explored because of its use of lesser computational power - preferable for practical systems. Thus we maximize this signal-to-noise approach instead of the conventional secrecy capacity maximization method. With this, an iterative algorithm using geometric programming (GP) and semi-definite programming (SDP) is presented with appreciable benefits. The results show here highlight the benefits of using fractional components of the powers of the relays to offer better secrecy capacity.

  • PDF

Anomaly Detection Scheme Using Data Mining Methods (데이터마이닝 기법을 이용한 비정상행위 탐지 방법 연구)

  • 박광진;유황빈
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • Intrusions pose a serious security risk in a network environment. For detecting the intrusion effectively, many researches have developed data mining framework for constructing intrusion detection modules. Traditional anomaly detection techniques focus on detecting anomalies in new data after training on normal data. To detect anomalous behavior, Precise normal Pattern is necessary. This training data is typically expensive to produce. For this, the understanding of the characteristics of data on network is inevitable. In this paper, we propose to use clustering and association rules as the basis for guiding anomaly detection. For applying entropy to filter noisy data, we present a technique for detecting anomalies without training on normal data. We present dynamic transaction for generating more effectively detection patterns.

Study on Machine Learning Techniques for Malware Classification and Detection

  • Moon, Jaewoong;Kim, Subin;Song, Jaeseung;Kim, Kyungshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4308-4325
    • /
    • 2021
  • The importance and necessity of artificial intelligence, particularly machine learning, has recently been emphasized. In fact, artificial intelligence, such as intelligent surveillance cameras and other security systems, is used to solve various problems or provide convenience, providing solutions to problems that humans traditionally had to manually deal with one at a time. Among them, information security is one of the domains where the use of artificial intelligence is especially needed because the frequency of occurrence and processing capacity of dangerous codes exceeds the capabilities of humans. Therefore, this study intends to examine the definition of artificial intelligence and machine learning, its execution method, process, learning algorithm, and cases of utilization in various domains, particularly the cases and contents of artificial intelligence technology used in the field of information security. Based on this, this study proposes a method to apply machine learning technology to the method of classifying and detecting malware that has rapidly increased in recent years. The proposed methodology converts software programs containing malicious codes into images and creates training data suitable for machine learning by preparing data and augmenting the dataset. The model trained using the images created in this manner is expected to be effective in classifying and detecting malware.

A Private Key Management Guideline For Secure Blockchain-Based Services (안전한 블록체인 기반 서비스를 위한 개인키 관리 가이드라인)

  • Noh, Siwan;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.899-914
    • /
    • 2022
  • A blockchain-based decentralized service can offer reliable services without the centralized server by operating the system based on the consensus among byzantine participants. Participants can interact with the blockchain network through a digital signature mechanism but the private key management issue remains unresolved. NIST SP800-57 provides a key-management guidance but this guidance is not appropriate for blockchain-based services because it does not consider a decentralized environment. In this paper, we define the core functions of the blockchain wallet application for private key management and present security protections according to NIST SP800-57, as well as related techniques to satisfy them. Finally, we propose the private key management guideline for secure blockchain-based decentralized services.

An IPSO-KELM based malicious behaviour detection and SHA256-RSA based secure data transmission in the cloud paradigm

  • Ponnuviji, N.P.;Prem, M. Vigilson
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4011-4027
    • /
    • 2021
  • Cloud Computing has emerged as an extensively used technology not only in the IT sector but almost in all sectors. As the nature of the cloud is distributed and dynamic, the jeopardies present in the current implementations of virtualization, numerous security threats and attacks have been reported. Considering the potent architecture and the system complexity, it is indispensable to adopt fundamentals. This paper proposes a secure authentication and data sharing scheme for providing security to the cloud data. An efficient IPSO-KELM is proposed for detecting the malicious behaviour of the user. Initially, the proposed method starts with the authentication phase of the data sender. After authentication, the sender sends the data to the cloud, and the IPSO-KELM identifies if the received data from the sender is an attacked one or normal data i.e. the algorithm identifies if the data is received from a malicious sender or authenticated sender. If the data received from the sender is identified to be normal data, then the data is securely shared with the data receiver using SHA256-RSA algorithm. The upshot of the proposed method are scrutinized by identifying the dissimilarities with the other existing techniques to confirm that the proposed IPSO-KELM and SHA256-RSA works well for malicious user detection and secure data sharing in the cloud.

Identification of Unknown Cryptographic Communication Protocol and Packet Analysis Using Machine Learning (머신러닝을 활용한 알려지지 않은 암호통신 프로토콜 식별 및 패킷 분류)

  • Koo, Dongyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.193-200
    • /
    • 2022
  • Unknown cryptographic communication protocols may have advantage of guaranteeing personal and data privacy, but when used for malicious purposes, it is almost impossible to identify and respond to using existing network security equipment. In particular, there is a limit to manually analyzing a huge amount of traffic in real time. Therefore, in this paper, we attempt to identify packets of unknown cryptographic communication protocols and separate fields comprising a packet by using machine learning techniques. Using sequential patterns analysis, hierarchical clustering, and Pearson's correlation coefficient, we found that the structure of packets can be automatically analyzed even for an unknown cryptographic communication protocol.

Adversarial Machine Learning: A Survey on the Influence Axis

  • Alzahrani, Shahad;Almalki, Taghreed;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.193-203
    • /
    • 2022
  • After the everyday use of systems and applications of artificial intelligence in our world. Consequently, machine learning technologies have become characterized by exceptional capabilities and unique and distinguished performance in many areas. However, these applications and systems are vulnerable to adversaries who can be a reason to confer the wrong classification by introducing distorted samples. Precisely, it has been perceived that adversarial examples designed throughout the training and test phases can include industrious Ruin the performance of the machine learning. This paper provides a comprehensive review of the recent research on adversarial machine learning. It's also worth noting that the paper only examines recent techniques that were released between 2018 and 2021. The diverse systems models have been investigated and discussed regarding the type of attacks, and some possible security suggestions for these attacks to highlight the risks of adversarial machine learning.

Malware API Classification Technology Using LSTM Deep Learning Algorithm (LSTM 딥러닝 알고리즘을 활용한 악성코드 API 분류 기술 연구)

  • Kim, Jinha;Park, Wonhyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.259-261
    • /
    • 2022
  • Recently, malicious code is not a single technique, but several techniques are combined and merged, and only important parts are extracted. As new malicious codes are created and transformed, attack patterns are gradually diversified and attack targets are also diversifying. In particular, the number of damage cases caused by malicious actions in corporate security is increasing over time. However, even if attackers combine several malicious codes, the APIs for each type of malicious code are repeatedly used and there is a high possibility that the patterns and names of the APIs are similar. For this reason, this paper proposes a classification technique that finds patterns of APIs frequently used in malicious code, calculates the meaning and similarity of APIs, and determines the level of risk.

  • PDF

A Novel Framework for APT Attack Detection Based on Network Traffic

  • Vu Ngoc Son
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.52-60
    • /
    • 2024
  • APT (Advanced Persistent Threat) attack is a dangerous, targeted attack form with clear targets. APT attack campaigns have huge consequences. Therefore, the problem of researching and developing the APT attack detection solution is very urgent and necessary nowadays. On the other hand, no matter how advanced the APT attack, it has clear processes and lifecycles. Taking advantage of this point, security experts recommend that could develop APT attack detection solutions for each of their life cycles and processes. In APT attacks, hackers often use phishing techniques to perform attacks and steal data. If this attack and phishing phase is detected, the entire APT attack campaign will be crash. Therefore, it is necessary to research and deploy technology and solutions that could detect early the APT attack when it is in the stages of attacking and stealing data. This paper proposes an APT attack detection framework based on the Network traffic analysis technique using open-source tools and deep learning models. This research focuses on analyzing Network traffic into different components, then finds ways to extract abnormal behaviors on those components, and finally uses deep learning algorithms to classify Network traffic based on the extracted abnormal behaviors. The abnormal behavior analysis process is presented in detail in section III.A of the paper. The APT attack detection method based on Network traffic is presented in section III.B of this paper. Finally, the experimental process of the proposal is performed in section IV of the paper.

Adversarial Attacks and Defense Strategy in Deep Learning

  • Sarala D.V;Thippeswamy Gangappa
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.127-132
    • /
    • 2024
  • With the rapid evolution of the Internet, the application of artificial intelligence fields is more and more extensive, and the era of AI has come. At the same time, adversarial attacks in the AI field are also frequent. Therefore, the research into adversarial attack security is extremely urgent. An increasing number of researchers are working in this field. We provide a comprehensive review of the theories and methods that enable researchers to enter the field of adversarial attack. This article is according to the "Why? → What? → How?" research line for elaboration. Firstly, we explain the significance of adversarial attack. Then, we introduce the concepts, types, and hazards of adversarial attack. Finally, we review the typical attack algorithms and defense techniques in each application area. Facing the increasingly complex neural network model, this paper focuses on the fields of image, text, and malicious code and focuses on the adversarial attack classifications and methods of these three data types, so that researchers can quickly find their own type of study. At the end of this review, we also raised some discussions and open issues and compared them with other similar reviews.