Viktoriya L. Pogrebnaya;Natalia O. Kodatska;Viktoriia D. Khurdei;Vitalii M. Razzhyvin;Lada Yu. Lichman;Hennadiy A. Senkevich
International Journal of Computer Science & Network Security
/
v.23
no.2
/
pp.193-198
/
2023
The article focuses on the areas of education activities in using techniques for teaching and learning with information and communication technologies (ICTs), researching and analyzing the available ICTs, gearing the technologies to the specific psychological and pedagogical conditions, independently building and modeling ICTs, enlarging and developing their use in the learning environment. The visualization of scientific research has been determined to be part of the educational support for building students' ICT competence during teaching and learning and is essential to the methodology culture. There have been specified main tasks for pedagogy technologies (PTs) to develop the skills of adaptability to the global digital space in students, their effective database operation and using the data bases as necessary elements for learning and as part of professional training for research. We provided rationalization for implementing the latest ICTs into the Ukrainian universities' curricula, as well as creating modern methods for using the technologies in the learning / teaching process and scientific activities.
International Journal of Computer Science & Network Security
/
v.22
no.12
/
pp.229-238
/
2022
Due to digitization, data has become a tsunami in almost every data-driven business sector. The information wave has been greatly boosted by man-to-machine (M2M) digital data management. An explosion in the use of ICT for farm management has pushed technical solutions into rural areas and benefited farmers and customers alike. This study discusses the benefits and possible pitfalls of using information and communication technology (ICT) in conventional farming. Information technology (IT), the Internet of Things (IoT), and robotics are discussed, along with the roles of Machine learning (ML), Artificial intelligence (AI), and sensors in farming. Drones are also being studied for crop surveillance and yield optimization management. Global and state-of-the-art Internet of Things (IoT) agricultural platforms are emphasized when relevant. This article analyse the most current publications pertaining to precision agriculture using ML and AI techniques. This study further details about current and future developments in AI and identify existing and prospective research concerns in AI for agriculture based on this thorough extensive literature evaluation.
International Journal of Computer Science & Network Security
/
v.23
no.3
/
pp.10-16
/
2023
The ever-increasing amount of data generated by various industries and systems has led to the development of data mining techniques as a means to extract valuable insights and knowledge from such data. The electrical energy industry is no exception, with the large amounts of data generated by SCADA systems. This study focuses on the analysis of historical data recorded in the SCADA database of the Libyan Electricity Company. The database, spanned from January 1st, 2013, to December 31st, 2022, contains records of daily date and hour, energy production, temperature, humidity, wind speed, and energy consumption levels. The data was pre-processed and analyzed using the WEKA tool and the Apriori algorithm, a supervised machine learning technique. The aim of the study was to extract association rules that would assist decision-makers in making informed decisions with greater efficiency and reduced costs. The results obtained from the study were evaluated in terms of accuracy and production time, and the conclusion of the study shows that the results are promising and encouraging for future use in the Libyan Electricity Company. The study highlights the importance of data mining and the benefits of utilizing machine learning technology in decision-making processes.
As one of the techniques for analyzing malicious code, techniques creating a sequence or a graph of function call relationships in an executable program and then analyzing the result are proposed. Such methods generally study function calling in the executable program code through static analysis and organize function call relationships into a sequence or a graph. However, in the case of an obfuscated executable program, it is difficult to analyze the function call relationship only with static analysis because the structure/content of the executable program file is different from the standard structure/content. In this paper, we propose a dynamic analysis method to analyze the function call relationship of an obfuscated execution program. We suggest constructing a function call relationship as a graph using the proposed technique.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.6
/
pp.1657-1673
/
2023
With the advancement of information technology, criminals employ multiple cyberspaces to promote cybercrime. To combat cybercrime and cyber dangers, banks and financial institutions use artificial intelligence (AI). AI technologies assist the banking sector to develop and grow in many ways. Transparency and explanation of AI's ability are required to preserve trust. Deep learning protects client behavior and interest data. Deep learning techniques may anticipate cyber-attack behavior, allowing for secure banking transactions. This proposed approach is based on a user-centric design that safeguards people's private data over banking. Here, initially, the attack data can be generated over banking transactions. Routing is done for the configuration of the nodes. Then, the obtained data can be preprocessed for removing the errors. Followed by hierarchical network feature extraction can be used to identify the abnormal features related to the attack. Finally, the user data can be protected and the malicious attack in the transmission route can be identified by using the Wrapper stepwise ResNet classifier. The proposed work outperforms other techniques in terms of attack detection and accuracy, and the findings are depicted in the graphical format by employing the Python tool.
International Journal of Computer Science & Network Security
/
v.23
no.10
/
pp.89-96
/
2023
Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.
International Journal of Computer Science & Network Security
/
v.23
no.12
/
pp.204-212
/
2023
Diabetes is a condition that can be brought on by a variety of different factors, some of which include, but are not limited to, the following: age, a lack of physical activity, a sedentary lifestyle, a family history of diabetes, high blood pressure, depression and stress, inappropriate eating habits, and so on. Diabetes is a disorder that can be brought on by a number of different factors. A chronic disorder that may lead to a wide range of complications. Diabetes mellitus is synonymous with diabetes. There is a correlation between diabetes and an increased chance of having a variety of various ailments, some of which include, but are not limited to, cardiovascular disease, nerve damage, and eye difficulties. There are a number of illnesses that are connected to kidney dysfunction, including stroke. According to the figures provided by the International Diabetes Federation, there are more than 382 million people all over the world who are afflicted with diabetes. This number will have risen during the years in order to reach 592 million by the year 2035. There are a substantial number of people who become victims on a regular basis, and a significant percentage of those people are uninformed of whether or not they have it. The individuals who are most adversely impacted by it are those who are between the ages of 25 and 74 years old. This paper reviews about various machine learning techniques used to detect diabetes mellitus.
Domain Name Systems (DNS) provide critical performance in directing Internet traffic. It is a significant duty of DNS service providers to protect DNS servers from bandwidth attacks. Data mining techniques may identify different trends in detecting anomalies, but these approaches are insufficient to provide adequate methods for querying traffic data in significant network environments. The patterns can enable the providers of DNS services to find anomalies. Accordingly, this research has used a new approach to find the anomalies using the Neural Network (NN) because intrusion detection techniques or conventional rule-based anomaly are insufficient to detect general DNS anomalies using multi-enterprise network traffic data obtained from network traffic data (from different organizations). NN was developed, and its results were measured to determine the best performance in anomaly detection using DNS query data. Going through the R2 results, it was found that NN could satisfactorily perform the DNS anomaly detection process. Based on the results, the security weaknesses and problems related to unpredictable matters could be practically distinguished, and many could be avoided in advance. Based on the R2 results, the NN could perform remarkably well in general DNS anomaly detection processing in this study.
The Internet of Things plays a role as an important element technology of the 4th Industrial Revolution. This study is currently developing intelligent cars with IT technology, and is at a time when the development of intelligent cars is active and network data communication is possible. However, security solutions are needed as security is still at a weak stage, which can be threatened by intrusions into the network from outside. In this paper, in order to improve security of intelligent cars without causing security problems, we will apply blockchain technology, propose biometric authentication techniques using users' biometric information, and continue to study them in the future.
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.6
/
pp.1327-1339
/
2015
This paper surveys structures, features and programming techniques of CNG that is substitution of CAPI in Microsoft, and implements hash provider for support HAS-160 that is one of the Korean hash algorithm. After that, we analysis agility from different perspective based on implemented results, and propose customizing stratagem. Analyzed results of basic concepts and implemented HAS-160 hash provider are expected applying measure for Korean cryptography algorithm in Vista environment. Consequently, we will research secure distribution way due to it is not apply on CNG.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.