• 제목/요약/키워드: Secure channel

Search Result 325, Processing Time 0.031 seconds

A Distributed Indexing Scheme for Wireless Data Broadcasting of Health Information FHIR Resources (의료 정보 FHIR 리소스 무선 데이터 방송을 위한 분산 인덱싱 기법)

  • Im, Seokjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2017
  • FHIR, next-generation standard for health information exchange, allows to exchange health information fast and to provide various health services. In this paper, we propose an indexing scheme of FHIR resources for adopting the resources to wireless data broadcasting with a secure channel. That scheme keeps the information of users to support to download FHIR resources from the secure wireless broadcast channel and the information on the resources. Using the proposed index, massive users can download their desired FHIR resources with less energy in short time. With simulation studies, we show the proposed indexing scheme outperforms other scheme broadcasting FHIR resources.

Robust Secure Transmit Design with Artificial Noise in the Presence of Multiple Eavesdroppers

  • Liu, Xiaochen;Gao, Yuanyuan;Sha, Nan;Zang, Guozhen;Wang, Shijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2204-2224
    • /
    • 2021
  • This paper studies secure wireless transmission from a multi-antenna transmitter to a single-antenna intended receiver overheard by multiple eavesdroppers with considering the imperfect channel state information (CSI) of wiretap channel. To enhance security of communication link, the artificial noise (AN) is generated at transmitter. We first design the robust joint optimal beamforming of secret signal and AN to minimize transmit power with constraints of security quality of service (QoS), i.e., minimum allowable signal-to-interference-and-noise ratio (SINR) at receiver and maximum tolerable SINR at eavesdroppers. The formulated design problem is shown to be nonconvex and we transfer it into linear matrix inequalities (LMIs). The semidefinite relaxation (SDR) technique is used and the approximated method is proved to solve the original problem exactly. To verify the robustness and tightness of proposed beamforming, we also provide a method to calculate the worst-case SINR at eavesdroppers for a designed transmit scheme using semidefinite programming (SDP). Additionally, the secrecy rate maximization is explored for fixed total transmit power. To tackle the nonconvexity of original formulation, we develop an iterative approach employing sequential parametric convex approximation (SPCA). The simulation results illustrate that the proposed robust transmit schemes can effectively improve the transmit performance.

A Study on Methods for Activating Libraries' YouTube Channel (도서관 유튜브(YouTube) 채널의 활성화 방안에 관한 연구)

  • Ro, Ji-Yoon;Noh, Younghee
    • Journal of the Korean Society for information Management
    • /
    • v.37 no.3
    • /
    • pp.1-24
    • /
    • 2020
  • The social media paradigm centered on videos continues to deepen due to the diversification of 5G devices, high-definition and immersive SNS. The purpose of this study is to propose various utilization strategies and measures through the analysis of the current status of YouTube channel operation and provided contents operated in public libraries. In this study, 44 libraries in Korea that have opened and operated Library YouTube Channel and 12 libraries that actively utilize library YouTube channels with more than 1,000 subscribers were surveyed for the current status of subscribers, views, video count data, and contents and delivery methods of Library YouTube Channel. Based on the analysis results, the library's YouTube channel was proposed to utilize the library's YouTube channel, 1) to secure the specificity and purpose of the library's YouTube channel, 2) to promote and enhance access to the YouTube channel, 3) to improve the YouTube channel to user-friendly interface, 5) to plan and provide library expertise and educational contents, 6) to operate the integrated YouTube channel, and 7) to provide user-based content.

A Study on Hybird Authentication Algorithm for Security Channel Retention (안전한 통신채널 확보를 위한 혼합형 인증알고리즘에 관한 연구)

  • Lee Seon-Keun;Kim Hwan-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.22-26
    • /
    • 2006
  • Symmetric cryptographic algorithm is incongruent in network environment by absence of authencation in spite of advantage of easy etc. on data processing and implementation of high speed. Therefore, proposed merging style authentication algorithm that use MAC and MDC so that symmetric cryptographic algorithm can achieve authentication. Proposed algorithm made security can wide of secure communication channel as to achieve authentication to cryptographic algerian itself not that act independently of symmetric cryptographic algorithm.

Multi-Channel Authentication based Security Card Design and Implementation (다중 채널 인증 기반 보안 카드의 설계 및 구현)

  • Seo, Hwa-jeong;Kim, Ho-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • In this paper, we present multi-channel authentication based security card design. Since this security card is written on the transparent paper, security information is extracted by overlaying the card with smartphone screen. This method removes the limitations of physical layout in previous security card and improves the security level. Furthermore, our security card is secure when our card is exposed to malicious users.

Lock-based Secure Protocol in Real-Time Databases (실시간 데이터베이스에서 로킹기반 보안 프로토콜)

  • 박수연;이승룡
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.211-213
    • /
    • 1998
  • 실시간 응용을 위한 데이터베이스 시스템은 시간 제약 조건을 만족시켜야 하며, 데이터 일관성을 유지해야 한다. 또한 다중레벨을 지원하는 보안 프로토콜은 cover channel의 생성을 방지하는 것이 중요하다. Son과 Mukkamala는 primary copy와 secondary copy를 사용한 SRT-2PL을 개발하였다. 이 프로토콜은 보안 레벨간의 불간섭(non-interference)을 지원하며, covert channel의 발생을 막을 수 있으며, 지연이 적고 취소가 적으므로 실시간 데이터베이스 시스템에서 보안을 유지하는데 사용될 수 있다. 그러나 secondary copy를 모든 데이터 오브젝트에 대해 항상 보존해야 하므로 작업공간의 낭비가 있고, 데이터의 갱신을 위해 update queue를 관리해야 하는 오버헤드와 그에 따른 예측성 결여가 문제점으로 나타난다. 따라서, 본 논문에서는 불간섭을 지원하여 covert channel의 발생을 방지하면서, 복사본의 유지 기간을 줄여 실시간 지원을 강화시키고, 예측성을 좀더 높인 개선된 SRT-2PL 실시간 데이터베이스 보안 프로토콜을 제안한다. 본 논문에서 제안하는 동적 복사 알고리즘은 트랜잭션의 동작에 따라 동적으로 복사본을 생성하여 레벨간의 불간섭을 제공함과 동시에, 복사본의 유지 기간을 줄여 작업공간의 낭비를 줄이고 예측성을 높일 수 있다.

Construction of Efficient and Secure Pairing Algorithm and Its Application

  • Choi, Doo-Ho;Han, Dong-Guk;Kim, Ho-Won
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.437-443
    • /
    • 2008
  • The randomized projective coordinate (RPC) method applied to a pairing computation algorithm is a good solution that provides an efficient countermeasure against side channel attacks. In this study, we investigate measures for increasing the efficiency of the RPC-based countermeasures and construct a method that provides an efficient RPC-based countermeasure against side channel attacks. We then apply our method to the well-known $\eta_T$ pairing algorithm over binary fields and obtain an RPC-based countermeasure for the $\eta_T$ pairing; our method is more efficient than the RPC method applied to the original $\eta_T$ pairing algorithm.

Second-Order G-equivariant Logic Gate for AND Gate and its Application to Secure AES Implementation (AND 게이트에 대한 2차 G-equivariant 로직 게이트 및 AES 구현에의 응용)

  • Baek, Yoo-Jin;Choi, Doo-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.221-227
    • /
    • 2014
  • When implementing cryptographic algorithms in mobile devices like smart cards, the security against side-channel attacks should be considered. Side-channel attacks try to find critical information from the side-channel infromation obtained from the underlying cryptographic devices' execution. Especially, the power analysis attack uses the power consumption profile of the devices as the side-channel information. This paper proposes a new gate-level countermeasure against the power analysis attack and the glitch attack and suggests how to apply the measure to securely implement AES.

Quantum Secure Direct Community using Time Lag (시간지연을 이용한 양자비밀직접통신)

  • Rim, Kwang-cheol;Lim, Dong-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2318-2324
    • /
    • 2017
  • Quantum cryptography, which is emerging as a next generation password, is being studied by quantum cryptographic transfer protocols and quantum secret communication. Quantum key transfer protocol can be used in combination with the modern password because of the inefficiency of the use of the password, or the use of OTP(one time password). In this paper an algorithm for direct communication by means of direct cryptographic communications rather than quantum keys. The method of implementing quantum secure direct community was adopted using 2-channel methods using Einstein gravity field. Two channels were designed to adopt a quantum secret communication protocol that applies time delay between 2-channels of channel to apply time difference between 2-channels. The proposed time delay effect reflects the time delay by reflecting the gravitational lensing phenomenon. Gravity generator with centrifugal acceleration is incorporated in the viscometer, and the time delay using this implies the correlation between the variance of the metametry.

One-round Protocols for Two-Party Authenticated Key Exchange (1-라운드 양자간 키 교환 프로토콜)

  • Jeong, Ik-Rae;Lee, Dong-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.110-118
    • /
    • 2006
  • Cryptographic protocol design in a two-party setting has of tel ignored the possibility of simultaneous message transmission by each of the two parties (i.e., using a duplex channel). In particular, most protocols for two-party key exchange have been designed assuming that parties alternate sending their messages (i.e., assuming a bidirectional half-duplex channel). However, by taking advantage of the communication characteristics of the network it may be possible to design protocols with improved latency. This is the focus of the present work. We present three provably-secure protocols for two-party authenticated key exchange (AKE) which require only a single round. Our first, most efficient protocol provides key independence but not forward secrecy. Our second scheme additionally provides forward secrecy but requires some additional computation. Security of these two protocols is analyzed in the random oracle model. Our final protocol provides the same strong security guarantees as our second protocol, but is proven secure in the standard model. This scheme is only slightly less efficient (from a computational perspective) than the previous ones. Our work provides the first provably- secure one-round protocols for two-party AKE which achieve forward secrecy.