• Title/Summary/Keyword: Secure Internet Server

Search Result 148, Processing Time 0.025 seconds

A study of Web Service Security System using the Secure Network Transfer Message (안전한 네트워크 전송 메시지를 이용한 웹 서비스 보안 시스템에 관한 연구)

  • Kim, Chang-Su;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.850-853
    • /
    • 2008
  • As th Internet grew rapidly, the Electronic Commerce that is based on Internet increased. The Electronic Commerce is unsubstantial in the mutual authentication between the parties and a commerce As a solution to this issue, a Web server uses a Client Message technology. The purpose of Client Message is to validate the user and the electronic commercial transaction. Further, it increases efficiency and offers several ability at various purposes. However, the Client Message is transferred and stored as an unencrypted text file, the information can be exposed easily to the network threats, end system threats, and Client Message harvesting threats. In this paper designed by used crypto algorithm a Secure Message as a solution to the issue have proposed above. Further, designed a security service per Network transmitting message to transfer client's user input information to a Web server safety.

  • PDF

A Single Server-based Secure Electronic Sealed-Bid Auction Method (단일 서버 기반의 안전한 봉인경매 기법)

  • Lee, Keon-Myung;Kim, Dong-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.678-686
    • /
    • 2004
  • This paper presents a new method to securely conduct online sealed-bid auctions with a single auctioneer server The sealed-bid auctions have several vulnerable security problems when they are performed on the Internet. One of such problems is the trust establishment between an auctioneer and bidders who participate in an auction. Several online sealed-bid auction methods have been developed to address this trust problem. The proposed method solves the security problems that would happen in the sealed-bid auction using a blind signature scheme and a contract signature protocol. It prevents the auctioneer from illegally manipulating the bidders' bidding information, repudiating the reception of some bid, manipulating the auction period, and illegally adding or deleting bids. In addition, it keeps the bidders from modifying the bidding information after issuing their bid and doing intentional mistake to invalidate their own bid. The method can be easily implemented using the multiagent architecture.

An Improved Privacy Preserving Construction for Data Integrity Verification in Cloud Storage

  • Xia, Yingjie;Xia, Fubiao;Liu, Xuejiao;Sun, Xin;Liu, Yuncai;Ge, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3607-3623
    • /
    • 2014
  • The increasing demand in promoting cloud computing in either business or other areas requires more security of a cloud storage system. Traditional cloud storage systems fail to protect data integrity information (DII), when the interactive messages between the client and the data storage server are sniffed. To protect DII and support public verifiability, we propose a data integrity verification scheme by deploying a designated confirmer signature DCS as a building block. The DCS scheme strikes the balance between public verifiable signatures and zero-knowledge proofs which can address disputes between the cloud storage server and any user, whoever acting as a malicious player during the two-round verification. In addition, our verification scheme remains blockless and stateless, which is important in conducting a secure and efficient cryptosystem. We perform security analysis and performance evaluation on our scheme, and compared with the existing schemes, the results show that our scheme is more secure and efficient.

Per-transaction Shared Key Scheme to Improve Security on Smart Payment System

  • Ahmad, Fawad;Jung, Younchan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.7-18
    • /
    • 2016
  • Several authentication methods have been developed to make use of tokens in the mobile networks and smart payment systems. Token used in smart payment system is genearated in place of Primary Account Number. The use of token in each payment transaction is advantageous because the token authentication prevents enemy from intercepting credit card number over the network. Existing token authentication methods work together with the cryptogram, which is computed using the shared key that is provisioned by the token service provider. Long lifetime and repeated use of shared key cause potential brawback related to its vulnerability against the brute-force attack. This paper proposes a per-transaction shared key mechanism, where the per-transaction key is agreed between the mobile device and token service provider for each smart payment transaction. From server viewpoint, per-transaction key list is easy to handle because the per-transaction key has short lifetime below a couple of seconds and the server does not need to maintain the state for the mobile device. We analyze the optimum size of the per-transaction shared key which satisfy the requirements for transaction latency and security strength for secure payment transactions.

Key Management Server Design for Providing Cryptographic Service in Cloud Computing Environment (Services in a Cloud Environment)

  • Jung, Ki Hyun;Shin, Seung Jung
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.26-31
    • /
    • 2016
  • In a cloud computing environment, a cryptographic service allows an information owner to encrypt the information and send it to a cloud server as well as to receive and decode encrypted data from the server which guarantees the confidentiality of shared information. However, if an attacker gains a coded data and has access to an encryption key via cloud server, then the server will be unable to prevent data leaks by a cloud service provider. In this paper, we proposed a key management server which does not allow an attacker to access to a coded key of the owners and prevents data leaks by a cloud service provider. A key management server provides a service where a server receives a coded public key of an information user from an owner and delivers a coded key to a user. Using a key management server proposed in this paper, we validated that the server can secure the confidentiality of an encryption key of data owners and efficiently distribute keys to data users.

An Enhanced Mutual Key Agreement Protocol for Mobile RFID-enabled Devices

  • Mtoga, Kambombo;Yoon, Eun-Jun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.65-71
    • /
    • 2012
  • Mobile RFID is a new application that uses a mobile phone as an RFID reader with wireless technology and provides a new valuable service to users by integrating RFID and ubiquitous sensor network infrastructures with mobile communication and wireless Internet. Whereas the mobile RFID system has many advantages, privacy violation problems on the reader side are very concerning to individuals and researchers. Unlike in regular RFID environments, where the communication channel between the server and reader is assumed to be secure, the communication channel between the backend server and the RFID reader in the mobile RFID system is not assumed to be safe. Therefore it has become necessary to devise a new communication protocol that secures the privacy of mobile RFID-enabled devices. Recently, Lo et al. proposed a mutual key agreement protocol that secures the authenticity and privacy of engaged mobile RFID readers by constructing a secure session key between the reader and server. However, this paper shows that this protocol does not meet all of the necessary security requirements. Therefore we developed an enhanced mutual key agreement protocol for mobile RFID-enabled devices that alleviates these concerns. We further show that our protocol can enhance data security and provide privacy protection for the reader in an unsecured mobile RFID environment, even in the presence of an active adversary.

  • PDF

On the Establishment of LSTM-based Predictive Maintenance Platform to Secure The Operational Reliability of ICT/Cold-Chain Unmanned Storage

  • Sunwoo Hwang;Youngmin Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.221-232
    • /
    • 2023
  • Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational reliability of the ICT/Cold-Chain Unmanned Storage, a predictive maintenance system was implemented based on the LSTM model. In this paper, a server for data management, such as collection and monitoring, and an analysis server that notifies the monitoring server through data-based failure and defect analysis are separately distinguished. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on RabbitMQ, loading data in an InMemory method using Redis, and managing snapshot data DB in real time. The predictive maintenance platform can contribute to securing reliability by identifying potential failures and defects that may occur in the operation of the ICT/Cold-Chain Unmanned Storage in the future.

A Study on Public Key Cryptographic Authentication System Providing Key Distribution and Recovery in the Initial Authentication (초기인증에서 키 분배 및 복구를 지원하는 공개키 암호 인증시스템에 관한 연구)

  • Shin Kwang-Cheul;Cho Sung-Je
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.83-91
    • /
    • 2006
  • In this paper, we improved a cryptography system model based on the secure initial authentication public key with PKINIT of authentication and key recovery protocol. It is applied to all fields of cryptography system using certificate. This study presents two mechanisms to authenticate between member users. The first mechanism is initial authentication and distribution of session key by public key cryptography based on certificate between entity and server, and the second mechanism is a key recovery support protocol considering loss of session key in the secure communication between application servers.

  • PDF

Provably-Secure Public Auditing with Deduplication

  • Kim, Dongmin;Jeong, Ik Rae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2219-2236
    • /
    • 2017
  • With cloud storage services, users can handle an enormous amount of data in an efficient manner. However, due to the widespread popularization of cloud storage, users have raised concerns about the integrity of outsourced data, since they no longer possess the data locally. To address these concerns, many auditing schemes have been proposed that allow users to check the integrity of their outsourced data without retrieving it in full. Yuan and Yu proposed a public auditing scheme with a deduplication property where the cloud server does not store the duplicated data between users. In this paper, we analyze the weakness of the Yuan and Yu's scheme as well as present modifications which could improve the security of the scheme. We also define two types of adversaries and prove that our proposed scheme is secure against these adversaries under formal security models.

A Strong Biometric-based Remote User Authentication Scheme for Telecare Medicine Information Systems with Session Key Agreement

  • An, Younghwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.41-49
    • /
    • 2016
  • Recently, many biometrics-based user authentication schemes for telecare medicine information systems (TMIS) have been proposed to improve the security problems in user authentication system. In 2014, Mishra et al. proposed an improvement of Awasthi-Srivastava's biometric based authentication for TMIS which is secure against the various attacks and provide mutual authentication, efficient password change. In this paper, we discuss the security of Mishra et al.'s authentication scheme, and we have shown that Mishra et al.'s authentication scheme is still insecure against the various attacks. Also, we proposed the improved scheme to remove these security problems of Mishra et al.'s authentication scheme, even if the secret information stored in the smart card is revealed. As a result, we can see that the improved biometric based authentication scheme is secure against the insider attack, the password guessing attack, the user impersonation attack, the server masquerading attack and provides mutual authentication between the user and the telecare system.