• Title/Summary/Keyword: Sectional structure

Search Result 595, Processing Time 0.031 seconds

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM USED BY THE ζ-PARALLEL STRUCTURE JACOBI OPERATOR

  • Kim, Nam-Gil;Ki, U-Hang;Kurihara, Hiroyuki
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.535-550
    • /
    • 2008
  • Let M be a real hypersurface of a complex space form with almost contact metric structure $({\phi},{\xi},{\eta},g)$. In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex: projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant and not equal to -c/24 on M, where c is a constant holomorphic sectional curvature of a complex space form.

Design of the Spur Gear with Honeycomb Lattice Structure and PBF Printing

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_1
    • /
    • pp.529-536
    • /
    • 2023
  • In this study, the spur gear with honeycomb lattice structures are designed. The pitch diameter and body length of the spur gear are Ø93 mm and 104.0 mm, respectively. The designed gear was printed using Powder bed fusion (PBF) 3D printer. The gear is 3D printed perfectly. Even the teeth and honeycombs of the gear were output in the same way as the design shape. The printed gear with honeycomb lattice structure has a 24% smaller cross-sectional area and 29% smaller volume and weight than conventional solid structure gears. The surface roughness is approximately 4.5㎛, and the hardness is 345 HV.

Hybrid-type stretchable interconnects with double-layered liquid metal-on-polyimide serpentine structure

  • Yim, Doo Ri;Park, Chan Woo
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.147-154
    • /
    • 2022
  • We demonstrate a new double-layer structure for stretchable interconnects, where the top surface of a serpentine polyimide support is coated with a thin eutectic gallium-indium liquid metal layer. Because the liquid metal layer is constantly fixed on the solid serpentine body in this liquid-on-solid structure, the overall stretching is accomplished by widening the solid frame itself, with little variation in the total length and cross-sectional area of the current path. Therefore, we can achieve both invariant resistance and infinite fatigue life by combining the stretchable configuration of the underlying body with the freely deformable nature of the top liquid conductor. Further, we fabricated various types of double-layer interconnects as narrow as 10 ㎛ using the roll-painting and lift-off patterning technique based on conventional photolithography and quantitatively validated their beneficial properties. The new interconnecting structure is expected to be widely used in applications requiring high-performance and high-density stretchable circuits owing to its superior reliability and capability to be monolithically integrated with thin-film devices.

Analysis of Internal Overpressure by Pipe Cross-Sectional Area Ratio and Filling Rate in the Hydraulic Test of Shipboard Tank (수압시험 시 관 단면적 비 및 충수 속도별 탱크 내부 과압 발생에 관한 해석)

  • Geun-Gon Kim;Tak-Kee Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.460-472
    • /
    • 2023
  • This study was conducted based on the case of an accident (excessive deformation) that occurred during the hydraulic test of a shipboard tank manufactured in accordance with the design regulations. Over-pressure phenomenon was noted as the main cause of accidents in the process of testing tanks without physical damage, which can be found in external factors such as cross-sectional difference between inlet pipe and air pipe and higher water filling rate than the recommended one. The main goal of this paper is to establish a safe water filling rate according to the range of sectional area ratio(SAR) reduced below the regulations for each test situation. The simulation was conducted in accordance with the hydraulic test procedure specified in the Ship Safety Act, and the main situation was divided into two types: filling the tank with water and increasing the water head to the test pressure. The structural safety evaluation of the pressure generated inside the tank and the effect on the structure during the test was reviewed according to the SAR range. Based on the results, guidelines for the optimal filling rate applicable according to SAR during the hydraulic test were presented for the shipboard tanks used in this study.

Structure-Control Combined Design with Structure Intensity

  • PARK JUNG-HYEN;KIM SOON HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.57-65
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

Optimum Design of Two Hinged Steel Arches with I Sectional Type (SUMT법(法)에 의(依)한 2골절(滑節) I형(形) 강재(鋼材) 아치의 최적설계(最適設計))

  • Jung, Young Chae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.65-79
    • /
    • 1992
  • This study is concerned with the optimal design of two hinged steel arches with I cross sectional type and aimed at the exact analysis of the arches and the safe and economic design of structure. The analyzing method of arches which introduces the finite difference method considering the displacements of structure in analyzing process is used to eliminate the error of analysis and to determine the sectional force of structure. The optimizing problems of arches formulate with the objective functions and the constraints which take the sectional dimensions(B, D, $t_f$, $t_w$) as the design variables. The object functions are formulated as the total weight of arch and the constraints are derived by using the criteria with respect to the working stress, the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge and including the economic depth constraint of the I sectional type, the upper limit dimension of the depth of web and the lower limit dimension of the breadth of flange. The SUMT method using the modified Newton Raphson direction method is introduced to solve the formulated nonlinear programming problems which developed in this study and tested out throught the numerical examples. The developed optimal design programming of arch is tested out and examined throught the numerical examples for the various arches. And their results are compared and analyzed to examine the possibility of optimization, the applicablity, the convergency of this algorithm and with the results of numerical examples using the reference(30). The correlative equations between the optimal sectional areas and inertia moments are introduced from the various numerical optimal design results in this study.

  • PDF

A Study on the Characteristics of Inorganic Polymer Mortar for Concrete Sectional Rehabilitation (콘크리트 단면복구용 무기성 모르타르의 특성에 관한 연구)

  • Hwang, Tae-Ha;Song, Tae-Hyeob;Im, Chil-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.171-177
    • /
    • 2010
  • As concrete structures are exposed to chemical substances, damaged from salt, or progressed to the neutralization, the surface damage of the structures is generated timely fashion, resulting shortened service life. Especially, the sulfate erosion causes rapid surface defects, and the steel skeleton becomes corroded due to the water infiltration, generating stability deterioration of the concrete structure. In this study, the physical characteristics of the acid-resistant mortar with aluminosilicates was investigated in order to resolve problems of the acid resistance, one of the most serious problems of the cement type repair material. As the result of the experiment, the test specimen turned to exhibit almost equivalent physical characteristics with those of concrete sectional repair materials in terms of compressive and bending strengths. As both the cement sectional repair material and the test specimen were immerged in sulfuric acid solution to examine weight changes, the test specimens exhibited only 4% loss of their weights while the cement sectional repair materials reached at the level of 80% or above, proving the excellence acid resistant characteristics of the test specimens. Consequently, the physical characteristics of acid resistant mortar with aluminosilicates were revealed to be superior than those of concrete sectional repair materials. It can be utilized as a sectional repair material where the acidic erosion is anticipated.

An Observational Study on the Morphological Changes of the External Ear Canal by Converging DICOM Imaging and Design Modeling (DICOM 영상과 설계 모델링을 융합한 외이도의 형태적 변화 관찰 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.173-179
    • /
    • 2019
  • DICOM(Digital Imaging and Communications in Medicine) imaging plays a significant role in the diagnosis and treatment of the human body, and design modeling is a technology of planning shapes in three dimensions according to the purpose. In this study, we converge these two technologies to observe the relationships of the cross-section, volume, and surface area to the morphological changes of the external ear canal. The experiment applied medical imaging technologies to acquire sections of the human body to create and divide centerlines using 3D shapes extracted from 19 external ear canals by applying stereolithography and 3-matic program. The results showed that the cross-sectional structure of the external ear canal had various shapes, such as oval (38.5%), semicircular (28.2%), mixed (17.9%), square (10.2%), and wrinkled (5.1%). In addition, the cross-sectional area of each phase increased as the length of the external ear canal increased, and the volume and surface area decreased towards the direction of the eardrum. However, the surface area reduction rate was relatively low. This indicates that the structure becomes irregular towards the direction of the eardrum.

A Study on Topology Optimization of Table Liner for Vertical Roller Mill using Homogenization Method (균질화법을 이용한 수직형 롤러 분쇄기용 테이블 라이너의 위상최적설계에 관한 연구)

  • 이동우;홍순혁;조석수;이선봉;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.113-122
    • /
    • 2003
  • Topology optimization is begun with layout optimization that is attributed to Rozvany and Prager of the 1960's. They claimed that structure was transformed into truss connecting all the nodes of finite element and optimized by control of its sectional modulus. But, this method is partial topology optimization. General layout optimal design appliable to continum structure was proposed by Bendsoe and Kikuchi in 1988. Topology optimization expresses material stiffness of structure into function of arbitrary variable. If this variable is 1, material exists but if this variable is 0, material doesn't exist. Therefore, topology optimization searches the distribution function of material stiffness for structure. There are a few researchs for simple engineering problem such as topology optimization of square plane structure or truss structure. So, This study applied to topology optimization of table liner for vertical roller mill that is the largest scale in the world. After table liner decreased by 20% of original weight, the structure analysis for first optimized model was performed.