• Title/Summary/Keyword: Sectional structure

Search Result 595, Processing Time 0.021 seconds

A Study on the Scale and Dimensions of member of Sectional structure for Five-Purlin Houses from Joseon Era (조선시대 민가 오량가(五樑架) 종단구성의 규모와 부재치수에 관한 연구)

  • Kim, Jae-Ung
    • Journal of architectural history
    • /
    • v.28 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • As a part of the research on existing structures of private homes from Joseon Era. Focusing on one hundred twenty five-purlin houses, the current study investigated the features and characteristics of the house structure from style, size, proportion and roof pitch, and measurements of key parts, and developed the following conclusions. Most are single-houses (89, 83%), and among them, there are 47 single front-terrace houses (39%), which is the highest number. The sizes of lower house structure do not differ greatly depending on the vertical structure, and single rear terrace house and double-house have relatively larger side sizes. The size of upper structure is larger in double-houses compared to other vertical structures, indicating a relatively higher roof. The cross-section measurement of major parts show that double-houses are larger than single-houses by 3cm in pillar, 3-4.5cm in crossbeam length, and 4.5cm in crossbeam width. However, Janghyeo width was consistent at 7.5 to 10.5cm, maintaining uniformity regardless of vertical structure of the houses. In addition, the cross-section measurements decreased from sixteenth to nineteenth century, with the size of pillar size decreasing the most. The result that the Janghyeo width is not related to the house structure house confirmed that the Janghyeo width was kept consistent regardless of the size of the house structure.

Static behavior of Kiewitt6 suspendome

  • Li, Kena;Huang, Dahai
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.309-320
    • /
    • 2011
  • As a new type of large-span space structure, suspendome is composited of the upper single-layer reticulated shell and the lower cable-strut system. It has better mechanical properties compared to single-layer reticulated shell, and the overall stiffness of suspendome structure increases greatly due to the prestress of cable. Consequently, it can cross a larger span reasonably, economically and grandly with high rigidity, good stability and simple construction. For a better assessment of the advantages of mechanical characteristic of suspendome quantitatively, the static behavior of Kiewitt6 suspendome was studied by using finite element method, and ADINA was the software application to implement the analysis. By studying a certain suspendome, the internal forces, deformation and support constrained forces of the structure were obtained in this paper. Furthermore, the influences of parameters including prestress, stay bar length, cross-sectional area and rise-to-span ratio were also discussed. The results show that the increase of prestress and vertical stay bar length can improve the stiffness of suspendome; Cross-sectional area has nearly no impact on the static behavior, and the rise-to-span ratio is the most sensitive parameter.

Strain Recovery Analysis of Non-uniform Composite Beam with Arbitrary Cross-section and Material Distribution Using VABS (VABS를 이용한 임의의 단면과 재료 분포를 가진 비균일 복합재료 보의 변형률 복원 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.204-211
    • /
    • 2015
  • This paper presents a theory related to a two-dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite wing structure with initial twist. Using VABS including a related theory, the design process of the composite rotor blade has been described. Cross-sectional analysis was performed at cutting point including all the details of geometry and material. Stiffness matrix and mass matrix were linked to each section to make 1D beam model. The 3D strain distributions within the structure were recovered based on the global behavior of the 1D beam analysis and visualize numerical results.

Improvement of Interfacial Adhesion of Metal Plated Synthetic Fabrics for Electromagnetic Wave Shielding by Using Cold Plasma (저온 플라즈마 처리에 의한 전자파 차폐성 금속화 합성섬유의 계면 밀착성 개선)

  • 천태일
    • Textile Coloration and Finishing
    • /
    • v.10 no.2
    • /
    • pp.8-17
    • /
    • 1998
  • In this study we have examined electroless chemical plating on the plasma grafted poly [ethylene terephathalate](PET) fabric in order to improve the interfacial adhesion between metal and fiber. The vapour phase of acrylic acid introduced on the PET surface and the graft polymerization was carried out by using cold plasma, resulting in the grafting yield of 0.8-1.3 wt%. The carboxyl group of the plasma grafted was identified by FT-IR-ATR spectra. The Interfacial adhesion was related to the carboxyl group. After electroless chemical plating of nickel, it showed that the more the carboxyl, the better the interfacial adhesion. Comparing to the untreated, the plasma grafted fabric showed fairly good interfacial adhesion(5B grade, ASTM D3359) . The shielding effect of electromagnetic wave showed 95dB. The shielding effect depends on the fabric structure, the surface structure, and the cross sectional shape of fibers. The dense fabric structure, the etched surface like a microcrater, and the trigonal cross sectional shape were prefered.

  • PDF

Complete open manifolds and horofunctions

  • Yim, Jin-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.351-361
    • /
    • 1995
  • Let M be a complete open Riemannian manifold. When the sectional curvature $K_M$ of M is nonpositive, Gromov has defined, in his lectures [3], the ideal boundary of M, and used it to study the geometric structure of M. In a Hadamard manifold, a simply connected manifold with nonpositive sectional curvature, a point at infinity can be defined as an equivalence class of rays. He proved many interesting theorems using this definition of ideal boundary and the so-called Tit's metric on it. He also suggested a counterpart to this for nonnegative curvature case. This idea has been taken up by Kasue to study the structure of complete open manifolds with asympttically nonnegative curvature [14]. Motivated by these works, we will define an idela boundary of a general noncompact manifold M, and study its structure.

  • PDF

Combined Optimal Design of Structure-Control Systems by Sliding Mode Control (슬라이딩모드 제어 기법을 이용한 구조-제어 시스템의 통합 최적 설계)

  • Park, Jung-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.45-51
    • /
    • 2002
  • To achieve the lightweight and robust design of a structure, it is requested to design a structure and its control system simultaneously, which is called as the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as an example for the applying the optimum design method. An initial load and a time varying disturbance were applied at the free end of the beam. Sliding mode control was selected due to its insensitiveness to the disturbance compared with other modes. It is known that the sliding mode control is robust to the disturbance and the uncertainty only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane and the objective function of the optimum switching hyper plane was assumed to be the objective one of the control system. The total weight of the structure was treated as a constraint and the cross sectional areas of the beam were considered as design variables, which means a nonlinear programming problem. The sequential linear programming method was applied to solve it. As a result of the optimum design, the effect of attenuating vibrations has been improved obviously. Moreover, lightweight design of the structure became possible from the relationship of the weight of the structure and the control objective function.

An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure (CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구)

  • Lee Jang-Hwan;Hwang Byoung-jun;Kim Je-Sub;Jung Keun-Ho;Lim Nam-Ki;Jung Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF

A Study on the Characteristics Analysis of Strands Melted by Over Current (과전류에 의해 용단된 소선의 특성해석에 관한 연구)

  • Choi, Chung-Seog;Kim, Hyang-Kon;Kim, Dong-Ook
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • The PVC insulated flexible cords are used mainly as power supply cords of electric appliance. This electric wire is a stranded wire consisted of dozens of strands. In case stranded wires are disconnected by mechanical stress, it weakens electrically. Finally, the over current flows through stranded wires, and electrical fire occurs. In this study, we analyzed the melting properties of strands by over current, such as melting process, melting current and melting time. And we analyzed that quantity of heat for melting, a cross sectional structure, and surface structure by optical microscope and SEM. As analysis results, melting time decreased as melting current increased. And quantity of heat for melting was low, too. From the cross sectional structure of melted wire, when a melting current low and melting time long, it was found that the dendrite structure grew. However, the dendrite structure is hard to grow because growing time is not enough when a melting current high and melting time short.

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

Practical Hull Form Design using VOB (VOB를 이용한 선형 설계 실용화에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.235-242
    • /
    • 2016
  • In general, ship hull form design is carried out in two stages. In the first stage, the longitudinal variation of the sectional area curves is adapted from a similar mother ship to determine the volume distribution in ships. At this design stage, the initial design conditions of displacement, longitudinal center of buoyancy, etc. are satisfied and the global hydrodynamic properties of the structure are optimized. The second stage includes the local designing of the sectional forms. Sectional forms are related to the local pressure resistance in the fore- and aft-body shapes, cargo boundaries, interaction between the hull and propeller, etc. These relationships indicate that the hull sections need to be optimized in order to minimize the local resistance. The volumetric balanced (VOB) variation of ship hull forms has been suggested by Kim (2013) as a generalized, systematic variation method for determining the sectional area curves in hull form design. This method is characterized by form parameters and is based on an optimization technique. This paper emphasizes on an extensional function of the VOB considering a geometrical wave profile. We select a container ship and an LNG carrier to demonstrate the applicability of the proposed technique. Through analysis, we confirm that the VOB method, considering the geometrical wave profile, can be used as an efficient tool in the hull form design for ships.