• Title/Summary/Keyword: Sectional steel

Search Result 392, Processing Time 0.021 seconds

Effect of Impact Energy on the Impact-Wear Properties of High Manganese Steels in Acidic Corrosive Conditions

  • Wang, Kai;Du, Xiao-Dong;Wu, Kai;Youn, Kuk-Tae;Lee, Chan Gyu;Koo, Bon Heun
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.362-369
    • /
    • 2008
  • The impact abrasion behavior of high manganese steel is investigated under three kinds of impact energy in acid hematite ore slurry by using a modified MLD-10 impact abrasion tester. Through the SEM observation of the worn surface and the optical metallographic analysis of the cross-sectional samples, the corrosive impact abrasion mechanisms of the steel under different impact energies are studied. In acid-hematite slurry, the variations of impact energies would result in synchronous transformation of the impact abrasion properties and mechanisms of the high manganese steel in the corrosive condition, as led different corrosive impact abrasion mechanism under different impact energies.

Behavior analysis of aerial tunnel maintenance truss platform with high tensile steel UL-700

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.513-521
    • /
    • 2017
  • The goal of this study is to investigate structural analysis and behaviors of an innovative aerial work platform truss frame whose ductility is improved by using high strength-steel UL-700. The present space truss frame can move or stop through tunnels for maintenance constructions by automatic facilities and workmanship within standardized limited building lines of tunnel. Most of all, this method overcomes problematic, which is to block cars during construction periods, seriously, of typical methods like as using truck and scaffolds for tunnel maintenance. According to evaluated appropriate design results of space truss frames of numerical examples by using a commercial MIDAS GEN program, it is verified that design parameters such as layered size, cross-sectional size, and steel material of the present space truss frame are determined to depend on characteristics such as lanes or shape of road tunnels.

Bond mechanism effect on the flexural behavior of steel reinforced concrete composite members

  • Juang, Jia-Ling;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.387-400
    • /
    • 2006
  • This paper discusses the composite mechanism and its effect upon the behavior of a steel reinforced concrete (SRC) member subjected to a flexural load. The relationship between member strength and deformation is established using the bond strength between the steel and reinforced concrete. An analytical model is proposed and used to incorporate the sectional strains and bond strength at the elastic and inelastic stages for moment-curvature relationship derivation. The results from the flexural load tests are used to validate the accuracy of the proposed model. Comparisons between the experimental information and the analytical results demonstrate close moment-curvature relevance, which justifies the applicability of the proposed method.

Parametric Study of Steel-Al Alloy SPR Joint Process via Finite Element Analysis (유한요소해석을 통한 Steel-Al합금 SPR 접합공정 주요인자 분석)

  • Kim, S.H.;Park, N.;Song, J.H.;Noh, W.;Park, K.Y.;Bae, G.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.301-306
    • /
    • 2020
  • The parametric study of Steel-Al alloy SPR joint process is based on the FE simulation described by Kim et al. [10], which was validated by comparing experimental and simulation results for two kinds of steel-Al alloy combinations according to the lower sheet thickness. To analyze the SPR joint process, the friction coefficient, the lower sheet thickness, and the rivet length were selected as the main parameters. Based on FE simulations, the effect of main parameters was investigated by measuring the interlock and the bottom thickness at the cross-sectional shape of the SPR joint. The results of simulation facilitate the design of SPR joint process in various metal combinations.

Jaya algorithm to solve single objective size optimization problem for steel grillage structures

  • Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this paper is to present a new and efficient optimization algorithm called Jaya for optimum design of steel grillage structure. Constrained size optimization of this type of structure based on the LRFD-AISC is carried out with integer design variables by using cross-sectional area of W-shapes. The objective function of the problem is to find minimum weight of the grillage structure. The maximum stress ratio and the maximum displacement in the inner point of steel grillage structure are taken as the constraint for this optimization problem. To calculate the moment and shear force of the each member and calculate the joint displacement, the finite elements analysis is used. The developed computer program for the analysis and design of grillage structure and the optimization algorithm for Jaya are coded in MATLAB. The results obtained from this study are compared with the previous works for grillage structure. The results show that the Jaya algorithm presented in this study can be effectively used in the optimal design of grillage structures.

Axial Compressive Strength of Rectangular Hollow Section Members (각형 강관의 축방향 압축강도에 관한 연구)

  • Jo, Jae Byung;Lim, Jeong Soon;Han, Choong Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.153-160
    • /
    • 1998
  • The sectional dimensions and initial crookedness of the RHS(rectangular hollow section, ${\boxe}-75{\times}75{\times}3.2,\;{\boxe}-100{\times}100{\times}4.2,\;{\boxe}-125{\times}125{\times}6.0$) were measured. The axial compressive strength tests for columns with slenderness $46{\sim}84$ were performed as well as stub tests and tensile tests. FEM analysis was also used. The measurement shows that the errors of sectional dimensions are negligible. For the column length corresponding to ${\lambda}=100$, the initial crookedness with the 2.5% probability estimated from the measured results is 1/490, 1/1121 1/1395 for each section respectively. The yield strengths obtained from tensile test are higher than the specified minimum value by more than 30%. The column test shows that the maximum axial resistances are almost same as, or a little higher than the FEM results and the specified strength curves of AISC Specification and Eurocode, when the maximum strengths from the stub tests are used as the yield strength of the steel. But the test results show much higher column strength than those specified in the Standard and Code, when the specified minimum yield strength of the steel is used.

  • PDF

A Study on the application for Z-Quality steel (Z-Quality 강재 적용에 대한 고찰)

  • Park, Sungjun;Ha, Yunsok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.8-13
    • /
    • 2017
  • The rolled carbon steel plate has anisotropic property in Z-direction(thickness direction). This is induced by cooling rate difference of Z-direction and sulfur which make non-metallic inclusion(MnS) at center line of thickness direction. Z-directional mechanical properties of normal steel plate are not generally specified and it is defined for Z-Quality steel only through tensile test in Z-direction. If Z-quality steel is not applied for cruciform joint, the lamella tearing will be occurred by tensile stress after welding & during operation of the structure. In this research, one equation estimating Z-directional(orthogonal to plate) stress was developed to prevent lamella tearing by welding. This equation deals with plate thickness & joint configuration(eccentricity, angle and curvature). Analyses were done by strain boundary method using sectional FE modeling and FE 3D models are also used for some cases. Designers can predict the possibility of lamella tearing by adequately applying the result and can appropriately minimize the application of Z-quality steel by revising welding design to some extent.

  • PDF

Experimental study on hysteretic properties of SRC columns with high steel ratio

  • Lu, Xilin;Yin, Xiaowei;Jiang, Huanjun
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.287-303
    • /
    • 2014
  • 8 steel reinforced concrete (SRC) columns with the encased steel ratio of 13.12% and 15.04% respectively were tested under the test axial load ratio of 0.33-0.80 and the low-frequency cyclic lateral loading. The cross sectional area of composite columns was $500mm{\times}500mm$. The mechanical properties, failure modes and deformabilities were studied. All the specimens produced flexure failure subject to combined axial force, bending moment and shear. Force-displacement hysteretic curves, strain curves of encased steels and rebars were obtained. The interaction behavior of encased steel and concrete were verified. The hysteretic curves of columns were plump in shapes. Hysteresis loops were almost coincident under the same levels of lateral loading, and bearing capacities did not change much, which indicated that the columns had good energy-dissipation performance and seismic capacity. Based on the equilibrium equation, the suggested practical calculation method could accurately predict the flexural strength of SRC columns with cross-shaped section encased steel. The obtained M-N curves of SRC columns can be used as references for further studies.

Structural Behavior of Newly Developed Cold-Formed Steel Sections(I) - Compressive Behavior (신형상 냉간성형 단면의 구조적 거동(I) - 압축거동)

  • Park, Myeung Kyun;Kim, Han Sik;Chung, Hyun Suk;Kwon, Yunng Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.349-356
    • /
    • 2002
  • Cold-Formed C-section and Lipped C-section are commonly used as structural members of steel houses in Korea. Both are made of SGC41 steel. However, special Cold-Formed Sections with unique cross sectional shape have been developed and widely used in advanced countries. This research focused on the newly developed thin-walled Cold-Formed Sections which possess not only high strength and stiffness but also other advantages in construction. A series of compression tests was conducted to investigate the structural behavior of a compression member, including its load carrying capacity. Test results were compared with analytical study results.

Structural Steel as Boundary Elements in Ductile Concrete Walls

  • Cho, Soon-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.73-84
    • /
    • 2000
  • A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems in such a heavily reinforced region, while maintaining the ductility and energy absorption capacity comparable to their traditional form. Two wall specimens containing rectangular hollow structural sections (HSS) and channels at their ends respectively, and one companion standard reinforced concrete wall specimen with concentrated end reinforcement were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. Initially, all three specimens were chosen and detailed with some caution to have approximately the same flexural capacity without change of the original shape and dimension of a rectangular cross section correction. Analysis and comparison of test results indicated that the reversed cyclic responses of three walls showed similar hysteretic properties, but in those with steel boundaries, local buckling of the corresponding steel webs and flanges following significant yielding was a dominant factor to determine the hysteretic response. The monotonic and cyclic responses predicted based on a sectional approach was also presented and found to be in good agreement with measured results. Design recommendations considering local instability of the structural steel elements and the interaction between steel chords and a concrete web member in such a composite wall are presented.

  • PDF