• Title/Summary/Keyword: Sectional steel

Search Result 392, Processing Time 0.03 seconds

Analytical evaluation and study on the springback according to the cross sectional form of 1.2GPa ultra high strength steel plate (1.2GPa급 초고강도강판의 단면 형태에 따른 스프링백에 관한 해석적 평가 및 연구)

  • Lee, Dong-Hwan;Han, Seong-Ryeol;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.17-22
    • /
    • 2019
  • Currently, studies on weight reduction and fuel efficiency increase are the most important topics in the automotive industry and many studies are under way. Among them, weight reduction is the best way to raise fuel efficiency and solve environmental pollution and resource depletion. Materials such as aluminum, magnesium and carbon curing materials can be found in lightweight materials. Among these, research on improvement of bonding technology and manufacturing method of materials and improvement of material properties through study of ultrahigh strength steel sheet is expected to be the biggest part of material weight reduction. As the strength of the ultra hight strength steel sheet increases during forming, it is difficult to obtain the dimensional accuracy as the elastic restoring force increases compared to the hardness or high strength steel sheet. It is known that the spring back phenomenon is affected by various factors depending on the raw material and processing process. We have conducted analytical evaluations and studies to analyze the springback that occurs according to the cross-sectional shape of the ultra high tensile steel sheet.

An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure (CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구)

  • Lee Jang-Hwan;Hwang Byoung-jun;Kim Je-Sub;Jung Keun-Ho;Lim Nam-Ki;Jung Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF

EVALUATION OF REORIENTATION AND DISTRIBUTION OF STEEL FIBERS IN SFRC (강섬유 보강 콘크리트 내 강섬유의 재향성 및 분포특성에 관한 연구)

  • 이차돈
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.65-72
    • /
    • 1990
  • Theoretical expressions were dcrived for the numher of fibers per unit cross-sectional area in fiber reinforced concrete, with due consideration given to the effects of the surrounding boundaries. The number of fibers per unit cross-sectional area in steel fiber reinforced concrete was also measured experimentally for the specimens incorporating various volume fractions of fibers of different types. Statistical evaluation of the measured value was then performed in order to assess the differences in fiber concentration at different location on tbe cross section. Degree of reorientation of steel fibers in concrete occuring during vibration was examined by com¬paring the differences in the computed and measur'ed values of the number of fibers per unit cross-sectional area.

Long-term Deflection Analysis of Simply Supported PC Beams Considering Steel Effects (PC 단순보의 강재영향을 고려한 장기처짐해석)

  • 이대우;박영식;이재훈;신영식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.245-250
    • /
    • 1995
  • Steel effects on creep deformation of prestressed concrete structues are investigated by a parametric study. Prestressed steel ratio, Prestressed steel distribution, initial flexural stress gradient, and modular ratio are selected as parameters. Sectional analysis for the beam section of parameter combination is performed to find curvatrue change due to creep. Based on the investigation, long-term curvature formulas from regression analysis are proposed. Application of the furmulas to simply supported prostressed concrete beam shows the effect of steel on deflection.

  • PDF

The Study on the Buckling Characteristics of Partially Increased Sectional Area for Compressed Circular Steel Tube (압축을 받는 강관의 단면보강에 따른 좌굴특성 검토)

  • 권영환;정환목;박상훈;석창목
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.187-193
    • /
    • 1999
  • As the slenderness ratio increases, it is necessary to examine the increased sectional area of member by means of increasing buckling strength because the sectional area of compressive member is designed in accordance with buckling. In this reason tn reinforce insufficient strength it don not have to reinforce the whole sectional area of member. Force of member can be increased in a way to restrict buckling mode by means of the partially increased sectional area of member. Therefore, in this study, we put emphasis on compressive members among many members that constitute space frame and try to get basic data about the reinforcement of space frame by means of investigating the bucking characteristic according to the size and length of partially increased sectional area of member.

  • PDF

An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region (인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구)

  • 손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel (상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화)

  • Bae, S.J.;Kim, J.H.;Hong, S.B.;Hong, S.K.;Namkung, J.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

Strength Evaluation of Steel Box Beam-to-Column Connections with Axial Load (축방향 하중을 받는 강재 상자단면 보-기둥 접합부의 강도평가)

  • Hwang, Won Sup;Park, Moon Su;Kim, Young Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.117-127
    • /
    • 2007
  • In this study, we evaluate the strength of steel box beam-to-column connections subjected to axial loads in steel frame piers. The T-connection strength was reduced due to the column axial force in the two-story pier structure. To examine this phenomenon, non-linear FEM analysis was carried out and the analytical procedure was verified by comparing it with experimental results. To clarify the effect of the axial force and major design parameters in connection with strength, influence of panel zone width-thickness ratio, sectional area, and axial force was investigated using FEM analysis. Also, the theoretical strength equations were suggested by stress distribution of panel zone. The strength of the T-connection was compared with one of the one-story pier structure connections. As a result, the strength evaluation equations are proposed in consideration of the panel zone width-thickness ratio and sectional area ratio for the T-connections.

Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads

  • Lee, Seung-Jo
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.135-160
    • /
    • 2007
  • Recently, CFT column has been well-studied and reported on, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing columns. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, research on concrete has examined numerical values for high-strength concrete filled steel square tube columns (HCFT) to explain transformation performance (M-${\phi}$) when a short-column receives equal flexure-moment from axial stress. Moment-curvature formulas are proposed for HCFT columns based on analytic assumption described in this paper. This study investigated structural properties (capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete mixed design (58.8 MPa), width-thickness ratio (D/t), buckling length to sectional width ratio (Lk/D) and concrete types (Zeolite, Fly-ash, Silica-fume) under eccentric loads. A comparative analysis executed for the AISC-LRFD, AIJ and Takanori Sato, etc. Design formulas to estimate the axial load (N)-moment (M)-curvature (${\phi}$) are proposed for HCFT columns based on tests results described in this paper.

Optimum design of steel framed structures including determination of the best position of columns

  • Torkzadeh, P.;Salajegheh, J.;Salajegheh, E.
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.343-359
    • /
    • 2008
  • In the present study, an efficient method for the optimum design of three-dimensional (3D) steel framed structures is proposed. In this method, in addition to choosing the best position of columns based on architectural requirements, the optimum cross-sectional dimensions of elements are determined. The preliminary design variables are considered as the number of columns in structural plan, which are determined by a direct optimization method suitable for discrete variables, without requiring the evaluation of derivatives. After forming the geometry of structure, the main variables of the cross-sectional dimensions are evaluated, which satisfy the design constraints and also achieve the least-weight of the structure. To reduce the number of finite element analyses and the overall computational time, a new third order approximate function is introduced which employs only the diagonal elements of the higher order derivatives matrices. This function produces a high quality approximation and also, a robust optimization process. The main feature of the proposed techniques that the higher order derivatives are established by the first order exact derivatives. Several examples are solved and efficiency of the new approximation method and also, the proposed method for the best position of columns in 3D steel framed structures is discussed.