• 제목/요약/키워드: Sectional Properties Analysis

검색결과 189건 처리시간 0.026초

부재력 특성을 고려한 변위조절설계법 개발 (Development of Drift Design Method Considering Characteristics of Member Forces)

  • 서지현;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.123-129
    • /
    • 2003
  • Drift design using resizing techniques can be a very practical method in drift design of high-rise buildings since it cannot require sensitivity analysis and structural re-analysis. Resizing techniques has used the cross sectional areas as design variable and supposed that displacement participation factors are inversely proportional to structural weights. Efficiency of resizing techniques based on displacement participation factors may depend on proper selection of sectional properties as design variables. In this study, two different drift design methods with the different sectional properties as design variables are presented and applied to a 20-story structure.

  • PDF

콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석 (Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties)

  • 성원진;김정현;윤성욱;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF

구간해석방법을 통한 새로운 비구형 입자성장해석 모델 (A New Model for the Analysis of Non-spherical Particle Growth Using the Sectional Method)

  • 정재인;최만수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.416-421
    • /
    • 2000
  • We have developed a simple model for describing the non-spherical particle growth phenomena using modified 1-dimensional sectional method. In this model, we solve simultaneously particle volume and surface area conservation sectional equations which consider particles' irregularities. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. We compared this model with a simple monodisperse-assumed model and more rigorous two dimensional sectional model. For the comparison, we simulated silica and titania particle formation and growth in a constant temperature reactor environment. This new model shows a good agreement with the detailed two dimensional sectional model in total number concentration, primary particle size. The present model can also successfully predict particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

  • PDF

새로운 비구형 입자 성장 해석 모델 (A New Model for the Analysis of Non-Spherical Particle Growth)

  • 정재인;최만수
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.1020-1027
    • /
    • 2000
  • A simple model for describing the non-spherical particle growth phenomena has been developed. In this model, we solve simultaneously particle volume and surface area conservation sectional equations that consider particles' non-sphericity. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. This model was compared with a simple monodisperse-assumed model and more rigorous two-dimensional sectional model. For comparison, formation and growth of silica particles have been simulated in a constant temperature reactor environment. This new model showed good agreement with the detailed two-dimensional sectional model in total number concentration and primary particle size. The present model successfully predicted particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

심층신경망 기반 회전익 블레이드의 단면 구조 강성 예측 모델 (Cross-Sectional Structural Stiffness Prediction Model for Rotor Blade Based on Deep Neural Network)

  • 강병주;천성우;조해성;기영중;김태성
    • 항공우주시스템공학회지
    • /
    • 제18권1호
    • /
    • pp.21-28
    • /
    • 2024
  • 본 논문에서는 회전익 블레이드의 단면 구조 정보를 통해 블레이드의 단면 강성을 예측하고, 재료 정보를 이용하여 단면 강성을 예측할 수 있는 심층 신경망 기반 네트워크 예측 모델의 설계 및 적절성 검토를 수행하였다. 재료 정보를 네트워크 입력으로 갖는 예측 모델의 경우, 블레이드 단면 부재 재료의 탄성 계수를 네트워크의 입력으로 고려하여 단면 강성을 예측하도록 설계하였다. 또한, 단면 구조 정보를 네트워크 입력으로 갖는 예측 모델의 경우, 블레이드의 단면을 구성하는 단면 부재의 위치와 두께 정보를 네트워크 입력으로 고려하여 단면 강성을 예측하도록 설계하였다. 각 예측 모델은 심층신경망 구조를 기반으로 설계하였으며, 단면 해석 프로그램인 KSAC2D를 통한 단면 해석 결과를 네트워크의 훈련 및 검증 데이터로 사용하였다.

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • 제27권6호
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

정압기 임계유동특성 및 배관망해석 요소로서의 고려에 관한 수치해석적 연구(II);단면적 및 개도 변화 (Numerical Study for The Critical-Flow-Characteristics of The Pressure Regulator and Considerations as a Pipe Network Element (II);Influence of the Cross-Sectional-Area and Opening Ratio)

  • 신창훈;하종만;이철구;허재영;임지현;주원구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1454-1459
    • /
    • 2004
  • The major parameters governing the fluid dynamical and thermo-dynamical behavior in the large pipeline network system are friction loss and the pipeline length. But in local pipeline networks and relatively short distance pipeline system, secondary loss and the considerations of the moving states of the fluid machine are also important. One of the major element in local pressure control system is pressure regulator. It causes the variations of the physical properties in that pipeline system. When it is under working, the accurate analysis of the flow properties is so difficult. In this study, some numerical approaches to investigate the critical-flow-characteristics of the pressure regulator have been done according to the variations of the opening ratio or cross-sectional area and the detail examinations and considerations of the pressure regulator as a pipeline network elements have been carried. Finally the flow-flied distributions and critical-flow-characteristics have been presented in detail and the critical flow phenomena and the relation to the opening ratio or cross-sectional-area ratio have been studied.

  • PDF

RC 전단벽의 재료 물성과 부재 그룹핑을 고려한 고층건물 변위조절설계법 개발 (Development of Drift Design Method of High-rise buildings considering Material Properties of Shear Walls and Design Variable Linking Strategy)

  • 서지현;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.487-494
    • /
    • 2004
  • Resizing techniques have been recognized as practical methods for drift design of high-rise building since sensitivity analysis and iterative structural analysis are not required in implementation. In the techniques, the amount of material of a memberin a building for resizing is determined in terms of cross-sectional areas and sectional inertia moments as design variables. In this study, five drift design methods are developed by considering design variable linking strategy and fomulating resizing algorithm in terms of material properties of shear walls as a design variable. The developed methods are applied to the drift design of 20-story frame-RC shear wall structure, and then evaluated in the view points of practicality and efficiency.

  • PDF

Effects of a relined fiberglass post with conventional and self-adhesive resin cement

  • Wilton Lima dos Santos Junior;Marina Rodrigues Santi;Rodrigo Barros Esteves Lins;Luis Roberto Marcondes Martins
    • Restorative Dentistry and Endodontics
    • /
    • 제49권2호
    • /
    • pp.18.1-18.13
    • /
    • 2024
  • Objectives: This study was conducted to evaluate the mechanical properties of relined and non-relined fiberglass posts when cemented to root canal dentin using a conventional dual-cure resin cement or a self-adhesive resin cement. Materials and Methods: Two types of resin cements were utilized: conventional and self-adhesive. Additionally, 2 cementation protocols were employed, involving relined and non-relined fiberglass posts. In total, 72 bovine incisors were cemented and subjected to push-out bond strength testing (n = 10) followed by failure mode analysis. The cross-sectional microhardness (n = 5) was assessed along the root canal, and interface analyses (n = 3) were conducted using scanning electron microscopy (SEM). Data from the push-out bond strength and cross-sectional microhardness tests were analyzed via 3-way analysis of variance and the Bonferroni post-hoc test (α= 0.05). Results: For non-relined fiberglass posts, conventional resin cement exhibited higher pushout bond strength than self-adhesive cement. Relined fiberglass posts yielded comparable results between the resin cements. Type II failure was the most common failure mode for both resin cements, regardless of cementation protocol. The use of relined fiberglass posts improved the cross-sectional microhardness values for both cements. SEM images revealed voids and bubbles in the incisors with non-relined fiberglass posts. Conclusions: Mechanical properties were impacted by the cementation protocol. Relined fiberglass posts presented the highest push-out bond strength and cross-sectional microhardness values, regardless of the resin cement used (conventional dual-cure or self-adhesive). Conversely, for non-relined fiberglass posts, the conventional dual-cure resin cement yielded superior results to the self-adhesive resin cement.

실 단면 형상과 니트 구조 인자가 흡한속건 소재의 수분이동 특성에 미치는 영향 (Effect of Yarns Cross-Sections and Structure Parameters of Its Knitted Fabrics to Moisture Transport of Perspiration Absorption and Fast Dry Fabrics)

  • 김현아
    • 한국의류산업학회지
    • /
    • 제20권4호
    • /
    • pp.457-463
    • /
    • 2018
  • This study examined the water absorption and drying properties of the thirteen types of the knitted fabrics for sports wear. These physical properties were analysed with relation to the constituent fiber cross-sectional shape and structure parameters of the knitted fabrics by regression analysis. Absorption and drying properties of the knitted fabric specimens were increased with increasing the porosity of the constituent yarns, which was attributed to the capillary channels in the yarns. The water absorption and drying properties were increased and decreased with increasing tightness factor and stitch density of the knitted fabric. The absorption property of the knitted fabric for perspiration absorption and fast dry sport-wear clothing was mostly influenced mostly by fiber cross-sectional shape and its characteristics, whereas, drying property was dependent on the structural parameters of the knitted fabric such as tightness factor and stitch density. Therefore, superior perspiration absorption and fast drying knitted fabric could be obtained in the fabric structure with optimum tightness factor and stitch density, and constituent yarn structure with non-circular fiber crosssection and high porosity. GATS method and MMT method are used to measure sweating fast drying properties and it is necessary to carry out studies using these measurement methods in order to compare with the results of this study.